The positive solutions of quasilinear elliptic inequalities on Riemannian products
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 6-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper asymptotic behavior of positive solutions of quasilinear elliptic inequalities (1) on warped Riemannian products is researched. In particular, we find exact conditions under which Liouville theorems on no nontrivial solutions are satisfied, as well as the conditions of existence and cardinality of the set of positive solutions of the studied inequalities on the Riemannian manifolds. The results generalize similar results obtained previously by Naito. Y. and Usami H. for the Euclidean space $\mathrm{R}^n$ and results obtained previously by Losev A. and Mazepa E. on the model Riemannian manifolds. We describe warped Riemannian products. Fix the origin $O \in \mathrm{R}^n$ and a smooth function $q_i > 0, i = 1, \ldots , k$ in the interval $(0, \infty)$. We define a Riemannian manifold $M$ as follows: (1) the set of points $M$ is all $\mathrm{R}^n$; (2) in coordinates $(r, {\theta}_1, \ldots , {\theta}_k)$ (where $r \in (0, \infty)$ and ${\theta}_i \in S^{n_i}$) Riemannian metric on $M \setminus \{ O\}$ defined as $$ ds^2 = dr^2 + q_1^2 (r) d{{\theta}_1}^2 + \dots + q_k^2 (r) d{{\theta}_k}^2, $$ where $d {\theta}_i$ — the standard Riemannian metric on the sphere $S^{n_i}$, $n=n_1+\dots n_k+1$ — the dimension of $M$; (3) Riemannian metric at $ O $ is a smooth continuation of the metric. Will further assume that the function $ A $ in the inequality (1) satisfies the following conditions: $$ \left\{ \begin{aligned} \in C(0, \infty), \quad A (p)> 0 \quad {\text for }\ p> 0, \\ (| p |) \in C({\rm \bf R})\cap C^1(0, \infty), \\ (p A (p)) '> 0 \; {\text for } \; p> 0, \\ \end{aligned} \right. $$ $ c (x)\equiv c(r) $ — continuous positive on $ \mathrm{R}_{+} $ function, and the function $ f \not\equiv 0 $ such that $ f(x, u) \in C (M)$, where $x=(r,\theta), f\not\equiv 0$ and $f(\cdot,0)=0$. Introduce designations $\theta=(\theta_1,\dots,\theta_k)\ $, $K=S_{1}\times S_{2} \dots\times S_{k}\ $, $q(r)=\prod\limits_{i=1}^k q_i^{n_i}(r)$, $$I(r)=\frac{1}{q(r)}\int\limits_{0}^{r}c(s)q(s)\,ds.$$ We also use the following assumption on the function $ f $: $$ {\mathrm{(F)}} \quad \left\{ \begin{aligned} {\text there \; are \; continuous \; functions \;} c(r)>0 \; {\text and \;} g(u)>0 \; {\text so \; that \;} \\ '(u)\geq 0, \; 0(r)g(u)\leq f(x,u) \; {\text for \;} u>0, \, r>0, \, \theta \in K, g(0)=0.\\ \end{aligned} \right. $$ First, consider the case where $ \lim\limits_ {p\rightarrow\infty} p A (p) \infty. $ Theorem 1. Let $ \lim\limits_{p \rightarrow \infty}pA (p) \infty$ and manifold $ M $ is such that $I(+0)=\lim\limits_{r \rightarrow +0}I (r)\infty$ and $\limsup\limits_{r \rightarrow \infty} I (r) = \infty $. Then, if the condition (F), then positive integer solutions of the inequality (1) on $ M $ does not exist. Next, consider the case where $ \lim\limits_{p \rightarrow \infty} pA (p) = \infty $. We prove a theorem on the non-existence of positive solutions of (1) and the conditions for the existence of a continuum of positive integer solutions of the inequality.
Keywords: quasilinear elliptic inequalities, asymptotic behavior, the theorem of Liouville type, warped Riemannian products, cardinality of the set of solutions.
@article{VVGUM_2015_6_a1,
     author = {E. A. Mazepa},
     title = {The positive solutions of quasilinear elliptic inequalities on {Riemannian} products},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--16},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a1/}
}
TY  - JOUR
AU  - E. A. Mazepa
TI  - The positive solutions of quasilinear elliptic inequalities on Riemannian products
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 6
EP  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a1/
LA  - ru
ID  - VVGUM_2015_6_a1
ER  - 
%0 Journal Article
%A E. A. Mazepa
%T The positive solutions of quasilinear elliptic inequalities on Riemannian products
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 6-16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a1/
%G ru
%F VVGUM_2015_6_a1
E. A. Mazepa. The positive solutions of quasilinear elliptic inequalities on Riemannian products. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 6-16. http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a1/

[1] D. Gilbarg, M. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., M., 2007, 464 pp. | MR

[2] A.\;G. Losev, “Some Liouville Theorems on Noncompact Riemannian Manifolds”, Siberian Mathematical Journal, 39:1 (1998), 87–93 | MR | Zbl

[3] A.\;G. Losev, Yu.\;S. Fedorenko, “On the Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds”, Mathematical Notes, 81:6 (2007), 867–878 | DOI | MR | Zbl

[4] A.\;G. Losev, E.\;A. Mazepa, “On the Asymptotic Behavior of Positive Solutions of Some Quasilinear Inequalities on Noncompact Riemannian Manifolds”, Ufa Mathematical Journal, 5:1 (2013), 83–89 | MR

[5] A.\;G. Losev, E.\;A. Mazepa, “On the Asymptotic Behavior of Solutions of Certain Equations Elliptic Type on Noncompact Riemannian Manifolds”, Russian Mathematics, 1999, no. 6 (445), 41–49 | MR | Zbl

[6] A.\;G. Losev, E.\;A. Mazepa, “Bounded Solutions of the Schrödinger Equation on Riemannian Products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110 | MR

[7] A.\;G. Losev, E.\;A. Mazepa, “The Positive Solutions of Quasilinear Inequalities on Model Riemannian Manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 1 (18), 59–69

[8] E.\;A. Mazepa, “On the Existence of Entire Solutions of a Semilinear Elliptic Equation on Noncompact Riemannian Manifolds”, Mathematical Notes, 81:1 (2007), 153–156 | DOI | MR | Zbl

[9] E.\;A. Mazepa, “The Positive Solutions of Quasilinear Elliptic Inequalities on Model Riemannian Manifolds”, Russian Mathematics, 2015, no. 9, 22–30 | MR | Zbl

[10] A. Grigor’yan, “Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl

[11] J.\;B. Keller, “On solutions of $\Delta u = f (u)$”, Commun. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl

[12] T. Kusano, C.\;A. Swanson, “Radial entire solutions of a class of quasilinear elliptic equations”, Journal of diff. equation, 83:2 (1990), 379–399 | DOI | MR | Zbl

[13] Y. Naito, H. Usami, “Entire solutions of the inequality ${\rm div}(A(|Du|Du)) \ge f(u)$”, Math. Z., 225 (1997), 167–175 | DOI | MR | Zbl

[14] R. Osserman, “On the inequality $\Delta u \ge f (u)$”, Pac. J. Math., 7:4 (1957), 1641–1647 | DOI | MR | Zbl