The switch effect of conductivity of graphene nanoribbons in an external electric field
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2015), pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The charge carriers in graphene in the low-energy approximation with respect to the Fermi level are described by the Dirac equation, rather than the usual in solid-state physics Schrodinger equation, because of symmetry of the crystal lattice of graphene. Electronic subzones formed by symmetric and antisymmetric combination of wave functions on different sublattices intersect at the edge of the Brillouin zone, which leads to a coneshaped energy spectrum near the “dirac” points. Influence of tangential fields on the band structure of a two-layer carbon “zig-zag” nanoribbons, calculated from the secular equation. With the increase of tangential electric field changes the transverse electron quasi-momentum, which leads to a shift of the allowed values of the wave vector in the Brillouin zone and their periodic passage through special points $K$ and $K'$. The change of the band structure is reflected on the forbidden band width which varies within a field from $0$ to $1$ eV. The amplitude and period of the change band gap depends on the geometry of the ribbon. Thus, within the approximation of constant relaxation time model in bilayer graphene ribbons a transition “metal-insulator” is observed, that creates “switch effect”: the opening and closing of the band gap by the external transverse electric field. Calculations have shown that the inclusion of the normal component of the electric field leads to a sharp drop in ribbon conductivity at low temperatures. Increase of the amplitude of the field tangential component leads to a small increase in conductivity over the entire temperature range. However, at low temperatures (below $50$ K), this increase is more pronounced, leading to a local minimum in the temperature dependence. Further increase of the tangential component of the field returns the system to its original state. By changing the value of the tangential component of the electric field can control the conductive properties of the material that can be used when creating new elements for micro- and nanoelectronics. For example, the effect of switching the electrical conductivity of bilayer graphene at low temperatures under the influence of an external transverse electric field allows to use it as a basis for the creation of the transistor. Identified pattern allows you to create elements of micro- and nanoelectronics with variable electronic characteristics. The predicted effect can be used to create a transistor based on bilayer graphene.
Mots-clés : graphene, carbon nanotubes
Keywords: nanoribbons, conductivity, solid state physics.
@article{VVGUM_2015_5_a7,
     author = {G. S. Ivanchenko and D. V. Kolesnikov and Yu. V. Nevzorova},
     title = {The switch effect of conductivity of graphene nanoribbons in an external electric field},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {84--93},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a7/}
}
TY  - JOUR
AU  - G. S. Ivanchenko
AU  - D. V. Kolesnikov
AU  - Yu. V. Nevzorova
TI  - The switch effect of conductivity of graphene nanoribbons in an external electric field
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 84
EP  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a7/
LA  - ru
ID  - VVGUM_2015_5_a7
ER  - 
%0 Journal Article
%A G. S. Ivanchenko
%A D. V. Kolesnikov
%A Yu. V. Nevzorova
%T The switch effect of conductivity of graphene nanoribbons in an external electric field
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 84-93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a7/
%G ru
%F VVGUM_2015_5_a7
G. S. Ivanchenko; D. V. Kolesnikov; Yu. V. Nevzorova. The switch effect of conductivity of graphene nanoribbons in an external electric field. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2015), pp. 84-93. http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a7/

[1] P.\;N. Dyachkov, Electron Properties and Applications of Nanotubes, BINOM. Laboratoriya znaniy Publ., M., 2010, 488 pp.

[2] G.\;S. Ivanchenko, N.\;G. Lebedev, “Electrical Conductivity of Double-Walled Carbon Nanotubes in the Framework of the Hubbard Model”, Physics of the Solid State, 49:1 (2007), 183–189 | MR

[3] Yu.\;A. Izyumov, I.\;I. Chashchin, D.\;S. Alekseev, Theory of Strongly Correlated Systems. The Method of Generating Functional, NITs «Regulyarnaya i khaoticheskaya dinamika» Publ., M.–Izhevsk, 2006, 384 pp.

[4] Yu.\;P. Kardona, Basics of Semiconductor Physics, FIZMATLIT Publ., M., 2002, 560 pp.

[5] I.\;A. Kvasnikov, Thermodynamics and Statistical Physics, v. 4, Quantum Statistics, KomKniga Publ., M., 2005, 352 pp.

[6] Yu.\;E. Lozovik, S.\;P. Merkulova, A.\;A. Sokolik, “Collective Electron Phenomena in Graphene”, Advances in Physical Sciences, 178:7 (2008), 758–776

[7] S.\;V. Morozov, K.\;S. Novoselov, A.\;K. Geim, “Electron Transport in Graphene”, Advances in Physical Sciences, 178:7 (2008), 776–780 | DOI

[8] N.\;F. Stepanov, Quantum Mechanics and Quantum Chemistry, Mir Publ., M., 2001, 519 pp.

[9] S.\;V. Tyablikov, Methods of Quantum Magnetism Theory, Nauka Publ., M., 1975, 528 pp.

[10] P. Blake et al., “Making graphene visible”, Appl. Phys. Lett., 91:6 (2007), 063124 | DOI | MR

[11] X. Wu et al., “Weak Antilocalization in Epitaxial Graphene: Evidence for Chiral Electrons”, Phys. Rev. Lett., 98:13 (2007), 136801 | DOI