Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2015_5_a4, author = {N. M. Kuzmin and M. A. Butenko}, title = {Numerical code for computation of aspiration flows in industrial buildings}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {52--60}, publisher = {mathdoc}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a4/} }
TY - JOUR AU - N. M. Kuzmin AU - M. A. Butenko TI - Numerical code for computation of aspiration flows in industrial buildings JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2015 SP - 52 EP - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a4/ LA - ru ID - VVGUM_2015_5_a4 ER -
N. M. Kuzmin; M. A. Butenko. Numerical code for computation of aspiration flows in industrial buildings. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2015), pp. 52-60. http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a4/
[1] Yu.\;V. Shafran, M.\;A. Butenko, N.\;M. Kuzmin, A.\;V. Khoperskov, “Software for Optimization of System of Ventilation of Big Industry Workshops”, Sovremennye informatsionnye tekhnologii i IT-obrazovanie, 2014, no. 10, 509–517
[2] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe”, SIAM Journal of Scientific Statistic Computing, 5:1 (1984), 1–20 | DOI | MR | Zbl
[3] B. van Leer, “Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme”, Journal of Computational Physics, 14:4 (1974), 361–370 | DOI | Zbl
[4] B. van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second Order Sequel to Godunov’s Method”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR
[5] M.\;A. Butenko, Yu.\;V. Shafran, S.\;A. Khoperskov, V.\;S. Kholodkov, A.\;V. Khoperskov, “The optimization problem of the ventilation system for metallurgical plant”, Applied Mechanics and Materials, 379 (2013), 167–172 | DOI
[6] E.\;F. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl