Gasdynamic modeling on the basis of the Lagrangian and Euler scheme LES --- ASG
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2015), pp. 36-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the numerical scheme LES — ASG which is modification of CSPH — TVD is considered in detail. Formulas of all stages of calculation with use of LF, HLL, HLLC methods for the solution of a task of Riemann are presented. Using LES — ASG it was succeeded to achieve more smooth distribution in comparison with CSPH — TVD. By results of comparison of LES — ASG and MUSCL it is possible to draw a conclusion on similarity of accuracy of numerical schemes. In this paper, compare the two types of solving the transport equation with inhomogeneous distribution of velocity, namely LES (Lagrange — Euler scheme) and MUSCL (Monotonic Upstream-Centered Scheme). According to the research we can assume that the scheme LES and MUSCL is equally well applicable for modeling the transport equation. The numerical scheme LES — ASG will be used as a basis for creation of the program complex aimed at modeling of gasdynamic currents with use of the OpenMP and CUDA technologies.
Keywords: numerical schemes, ASG, cSPH — TVD, MUSCL, Lagrangian and Euler scheme.
Mots-clés : LES
@article{VVGUM_2015_5_a3,
     author = {A. V. Belousov and S. S. Khrapov},
     title = {Gasdynamic modeling on the basis of the {Lagrangian} and {Euler} scheme {LES} --- {ASG}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {36--51},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a3/}
}
TY  - JOUR
AU  - A. V. Belousov
AU  - S. S. Khrapov
TI  - Gasdynamic modeling on the basis of the Lagrangian and Euler scheme LES --- ASG
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 36
EP  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a3/
LA  - ru
ID  - VVGUM_2015_5_a3
ER  - 
%0 Journal Article
%A A. V. Belousov
%A S. S. Khrapov
%T Gasdynamic modeling on the basis of the Lagrangian and Euler scheme LES --- ASG
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 36-51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a3/
%G ru
%F VVGUM_2015_5_a3
A. V. Belousov; S. S. Khrapov. Gasdynamic modeling on the basis of the Lagrangian and Euler scheme LES --- ASG. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2015), pp. 36-51. http://geodesic.mathdoc.fr/item/VVGUM_2015_5_a3/

[1] A.\;V. Belousov, S.\;S. Khrapov, “Development of the Program for Numerical Gasdynamic Modeling on the Basis of Lagrange–Euler Scheme the LES—ASG”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 1 (26), 30–39

[2] A.\;G. Zhumaliev, S.\;S. Khrapov, “A Numerical Scheme Based on the Combined SPH—TVD Approach: Simulation of the Shock Front”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1 (16), 24–27

[3] M.\;A. Eremin, A.\;V. Khoperskov, S.\;A. Khoperskov, “Finite Volume Sheme of Integration for Hydrodynamics Equations”, Izv. Volgogr. gos. tekhn. un-ta, 2010, no. 6:8, 24–27

[4] N.\;M. Kuzmin, V\;V. Mustsevoy, S.\;S. Khrapov, “Numerical Modeling of the Evolution of Unstable Modes of Jets From Young Stellar Objects”, Astronomy Reports, 84:12 (2007), 1089–1098

[5] A.\;G. Kulikovskiy, N.\;V. Pogorelov, A.\;Yu. Semenov, Mathematical Problems in the Numerical Solution of Hyperbolic Systems, FIZMATLIT Publ., M., 2001, 656 pp. | MR

[6] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;S. Kobelev, “Numerical Scheme for Modeling the Dynamics of Surface Water Based on the Combined SPH—TVD-Approach”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 282–297

[7] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical Scheme CSPH—TVD: Investigation of Influence Slope Limiters”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1 (20), 22–34 | MR

[8] G.\;D. van Albada, B. van Leer, W.\;W. Roberts, “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108:1 (1982), 76–84 | Zbl

[9] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Communications on Pure and Applied Mathematics, 5:3 (1952), 243–255 | DOI | MR | Zbl

[10] S.\;F. Davis, “Simplified Second-Order Godunov-Type Methods”, SIAM J. Sci. Stat. Comput., 9:3 (1988), 445–473 | DOI | MR | Zbl

[11] B. Einfeldt, “On Godunov-Type Methods for Gas Dynamics”, SIAM J. Numer. Anal., 25:2 (1988), 294–318 | DOI | MR | Zbl

[12] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[13] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM review, 25:1 (1983), 35–61 | DOI | MR | Zbl

[14] J. Hudson, Numerical techniques for conservation laws with source terms, PhD Thesis, University of Reading, Reading, 1998, 118 pp. | Zbl

[15] B. van Leer, “Towards the Ultimate Conservative Difference Scheme II. Monotonicity and Conservation Combined in a Second Order Scheme”, J. Comput. Phys., 14:4 (1974), 361–370 | DOI | MR | Zbl

[16] B. van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second Order Sequel to Godunov’s Method”, J. Comput. Phys., 32:1 (1979), 110–136 | MR

[17] J.\;J. Monaghan, “Simulating free surface flows with SPH”, Comput. Phys., 110:2 (1994), 399–406 | DOI | Zbl

[18] J.\;J. Monaghan, “Smoothed Particle Hydrodynamics”, Annual Review of Astronomy and Astrophysics, 30 (1992), 543–574 | DOI

[19] P.\;L. Roe, “Some Contributions to the Modelling of Discontinuous Flows”, Proceedings of the SIAM/AMS Seminar, 1983, 163–193 | MR

[20] P.\;K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J., 21:5 (1984), 995–1011 | MR | Zbl

[21] E.\;F. Toro, M. Spruce, W. Speares, “Restoration of the Contact Surface in the HLL-Riemann solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl

[22] P. Woodward, P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl