Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2015_4_a3, author = {T. S. Shushk{\cyre}vich and N. M. Kuz'min and M. A. Butenko}, title = {The three-dimensional parallel numerical code on the base of mixed {Lagrange--Eulerian} approach}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {24--34}, publisher = {mathdoc}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a3/} }
TY - JOUR AU - T. S. Shushkеvich AU - N. M. Kuz'min AU - M. A. Butenko TI - The three-dimensional parallel numerical code on the base of mixed Lagrange--Eulerian approach JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2015 SP - 24 EP - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a3/ LA - ru ID - VVGUM_2015_4_a3 ER -
%0 Journal Article %A T. S. Shushkеvich %A N. M. Kuz'min %A M. A. Butenko %T The three-dimensional parallel numerical code on the base of mixed Lagrange--Eulerian approach %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2015 %P 24-34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a3/ %G ru %F VVGUM_2015_4_a3
T. S. Shushkеvich; N. M. Kuz'min; M. A. Butenko. The three-dimensional parallel numerical code on the base of mixed Lagrange--Eulerian approach. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2015), pp. 24-34. http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a3/
[1] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme cSPH–TVD: front of shock wave simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2 (17), 60–67
[2] P.\;V. Kaygorodov, “Practical questions about adaptation explicit numerical codes to multiprocessor architecture”, Keldysh Institute preprints, 2002, 058, 28 pp.
[3] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “The numerical scheme for simulation of dynamics of surface water on the base of mixed SPH–TVD approach”, Numerical methods and programming, 12:1 (2011), 282–297
[4] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical scheme cSPH–TVD: investigation of influence slope limiters”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1 (20), 22–34 | MR
[5] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM Review, 25:1 (1983), 35–61 | DOI | MR | Zbl
[6] B. van Leer, “Towards the ultimative conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275 | DOI | Zbl