Triangulation of spatial elementary domains
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2015), pp. 6-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a domain $\Omega \subset {\mathbf{R}}^3$ that has the form $$ \Omega=\left\{(x,y,z): a,\ c,\ \varphi(x,y)\psi(x,y)\right\}, $$ where $\varphi(x,y)$ and $\psi(x,y)$ are given functions in rectangle $[a,b]\times [c,d]$ which satisfy Lipschitz condition. Let $a=x_0$ be a partition of the segment $[a,b]$ and $c=y_0$ be a partition of the segment $[c,d]$. We put $$ f_{\tau}(x,y)=\tau\psi(x,y)+(1-\tau)\varphi(x,y), \ \tau\in[0,1]. $$ We divide the segment $[0,1]$ by points $0=\tau_0\tau_1\tau_2...\tau_k=1$ and consider the grid in the domain $\Omega$ defined points $$ A_{ijl}(x_i,y_j,z_{ijl})=(x_i,y_j,f_{\tau_l}(x_i,y_j)), \ i=0,...,n,\ j=0,...,m,\ l=0,...,k. $$ In this paper we built a triangulation of the region $\Omega$ of nodes $A_ {ijl}$ such that a decrease in the fineness of the partition, and under certain conditions, the dihedral angles are separated from zero to some positive constant.
Mots-clés : triangulation, tetrahedron, partition of domain
Keywords: dihedral angle, elementary domain, Lipschitz condition.
@article{VVGUM_2015_4_a1,
     author = {A. A. Klyachin and A. Yu. B{\cyre}l{\cyre}nikina},
     title = {Triangulation of spatial elementary domains},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--12},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a1/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - A. Yu. Bеlеnikina
TI  - Triangulation of spatial elementary domains
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 6
EP  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a1/
LA  - ru
ID  - VVGUM_2015_4_a1
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A A. Yu. Bеlеnikina
%T Triangulation of spatial elementary domains
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 6-12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a1/
%G ru
%F VVGUM_2015_4_a1
A. A. Klyachin; A. Yu. Bеlеnikina. Triangulation of spatial elementary domains. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2015), pp. 6-12. http://geodesic.mathdoc.fr/item/VVGUM_2015_4_a1/