Triangulation algorithm based on empty convex set condition
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2015), pp. 27-33

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to generalization of Delaunay triangulation. We suggest to consider empty condition for special convex sets. For given finite set $P\subset \mathbb{R}^n$ we shall say that empty condition for convex set $B\subset \mathbb{R}^n$ is fullfiled if $P\cap B=P\cap \partial B$. Let $\Phi=\Phi_{\alpha}, \alpha \in {\mathcal A}$ be a family of compact convex sets with non empty inner. Consider some nondegenerate simplex $S\subset \mathbb{R}^n$ with vertexes $p_0,...,p_n$. We define the girth set $B(S)\in \Phi$ if $q_i\in \partial B(S), i=0,1,...,n$. We suppose that the family $\Phi$ has the property: for arbitrary nondegenerate simplex $S$ there is only one the girth set $B(S)$. We prove the following main result. Theorem 1. If the family $\Phi=\Phi_{\alpha}, \alpha\in {\mathcal A}$ of convex sets have the pointed above property then for the girth sets it is true: The set $B(S)$ is uniquely determined by any simplex with vertexes on $\partial B(S)$. Let $S_1,S_2$ be two nondegenerate simplexes such that $B(S_1)\ne B(S_2)$. If the intersection $B(S_1)\cap B(S_2)$ is not empty, then the intersection of boundaries $B(S_1), B(S_2)$ is $(n-2)$-dimensional convex surface, lying in some hyperplane. If two simplexes $S_1$ and $S_2$ don't intersect by inner points and have common $(n-1)$-dimensional face $G$ and $A$, $B$ are vertexes don't belong to face $G$ and vertex $B$ of simplex $B(S_2)$ such that $B\not \in B(S_1)$ then $B(S_2)$ does not contain the vertex $A$ of simplex $S_1$. These statements allow us to define $\Phi$-triangulation correctly by the following way. The given triangulation $T$ of finite set $P\subset \mathbb{R}^n$ is called $\Phi$-triangulation if for all simlex $S\in T$ the girth set $B(S)\in Phi$ is empty. In the paper we give algorithm for construct $\Phi$-triangulation arbitrary finite set $P\subset \mathbb{R}^n$. Besides we describe exapmles of families $\Phi$ for which we prove the existence and uniqueness of girth set $B(S)$ for arbitrary nondegenerate simplex $S$.
Mots-clés : triangulation, Delaunay triangulation
Keywords: empty shpere condition, convex set, convex function, convex hull.
@article{VVGUM_2015_3_a3,
     author = {V. A. Klyachin},
     title = {Triangulation algorithm based on empty convex set condition},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {27--33},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a3/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Triangulation algorithm based on empty convex set condition
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 27
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a3/
LA  - ru
ID  - VVGUM_2015_3_a3
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Triangulation algorithm based on empty convex set condition
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 27-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a3/
%G ru
%F VVGUM_2015_3_a3
V. A. Klyachin. Triangulation algorithm based on empty convex set condition. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2015), pp. 27-33. http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a3/