Keywords: theorems of Liouville, model Riemannian manifolds, radially symmetric solutions, problem of Cauchy.
@article{VVGUM_2015_3_a1,
author = {A. P. Sazonov},
title = {Positive solutions of elliptic equations on {Riemannian} manifolds of a special type},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {6--18},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a1/}
}
A. P. Sazonov. Positive solutions of elliptic equations on Riemannian manifolds of a special type. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2015), pp. 6-18. http://geodesic.mathdoc.fr/item/VVGUM_2015_3_a1/
[1] S.\;S. Vikharev, “Some Liouville Theorems for Stationary Ginzburg–Landau Equation on Quasimodel Riemannian Manifolds”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:3 (2015), 127–135
[2] A.\;G. Losev, “Some Liouville Theorems on Riemannian Manifolds of Special Type”, Soviet Mathematics, 1991, no. 12, 15–24 | MR | Zbl
[3] A.\;G. Losev, “The Schrödinger Equation in the Curved Riemannian Products”, Trudy po analizu i geometrii, Izd-vo in-ta matematiki Publ., Novosibirsk, 2000, 350–369 | MR | Zbl
[4] A.\;G. Losev, A.\;P. Sazonov, “On the Asymptotic Behavior of Solutions of Semilinear Equations on Model Riemannian Manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 36–56 | DOI
[5] A.\;G. Losev, Yu.\;S. Fedorenko, “Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds”, Mathematical Notes, 81:6 (2007), 867–878 | DOI | MR | Zbl
[6] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl
[7] T. Kusan, M. Naito, “Positive entire solutions of superlinear elliptic equations”, Hirosima Math. J., 16:2 (1986), 361–366 | MR | Zbl
[8] M. Murata, “Nonnegative solutions of the heat equation on rotationally symmetric Riemannian manifolds and semismall parrurbations”, Rev. Mat. Iberoamericana, 27:3 (2011), 885–907 | DOI | MR | Zbl
[9] M. Murata, T. Tsuchida, “Uniqueness of $L^1$-harmonic functions on rotationally symmetric Riemannian manifolds”, Kodai Math. J., 37:1 (2014), 1–15 | DOI | MR | Zbl