Numerical study of the stability of equilibrium surfaces using NumPy package
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2015), pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to numerical investigation of stability for equilibrium surfaces. These surfaces are models for surfaces between two media. Moreover, these surfaces are extremal surfaces for the functional of the follwing type $$ W({\mathcal M})=A({\mathcal M})+G({\mathcal M}), $$ where $$ A({\mathcal M})=\int\limits_{{\mathcal M}}\alpha(x)d\mathcal M, \quad G({\mathcal M})=\int\limits_{\Omega_1}\varphi(x)dx, $$ and domains $\Omega\subset R^{n+1}$, $\Omega_1\subset \Omega$ such that $\partial \Omega_1\cap\partial \Omega = {\mathcal M}$. The problem of study a stability of equilibrium surfaces is reduced to investigate the value of kind $$ \inf_{h}\frac{\int\limits_{\mathcal M}|\nabla h|^2d\mathcal M}{\int\limits_{\mathcal M}||A||^2h^2d\mathcal M}, $$ where $||A||$ is norm of second fudamental form for surface $\mathcal M\subset R^n$, and gradient $\nabla h$ is calculated in Riemann metric of $\mathcal M$. Using piecewise linear interpolation this value can be approximated by the value $$ \min_{\bar{h}}\frac{\langle A\bar{h},\bar{h}\rangle}{\langle B\bar{h},\bar{h}\rangle}, $$ where $A,B$ are symmetric positive definite matrixes. The article describes Python package NDimVar implemented on the basis package NumPy for solution of the above pointed problem. In addition, the study of stability for minimal surface of catenoid $$ \left\{ \begin{array}{lcl} x_1= \cosh\frac{t}{a}\cos\varphi\\ x_2= \cosh\frac{t}{a}\sin\varphi\\ x_3=, \; |t|\end{array} \right. $$ is considered. It is calculated maximal value of $T$ under which catenoid is stable minimal surface.
Keywords: extremal surface, piecewise linear approximation, main frequency, package NumPy.
Mots-clés : triangulation
@article{VVGUM_2015_2_a2,
     author = {V. A. Klyachin and E. G. Grigoreva},
     title = {Numerical study of the stability of equilibrium surfaces using {NumPy} package},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {17--30},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - E. G. Grigoreva
TI  - Numerical study of the stability of equilibrium surfaces using NumPy package
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 17
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/
LA  - ru
ID  - VVGUM_2015_2_a2
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A E. G. Grigoreva
%T Numerical study of the stability of equilibrium surfaces using NumPy package
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 17-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/
%G ru
%F VVGUM_2015_2_a2
V. A. Klyachin; E. G. Grigoreva. Numerical study of the stability of equilibrium surfaces using NumPy package. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2015), pp. 17-30. http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/

[1] Yu.\;A. Aminov, Minimal surfaces, Series of lectures, Izd-vo KhGU Publ., Kharkov, 1978, 126 pp.

[2] E.\;G. Grigoreva, “Some estimates of principle frequency for Finsler metrics”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 18–22

[3] A.\;A. Klyachin, M.\;A. Gatsunaev, “On uniform convergence of piecewise-linear solutions to minimal surface equation”, Ufa Mathematical Journal, 6:3 (2014), 3–16

[4] A.\;A. Klyachin, “On the rate of convergence of sequences, delivering a minimum in the variational problem”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1 (16), 12–20 | MR

[5] V.\;A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izvestiya: Mathematics, 76:4 (2012), 41–48 | DOI | MR | Zbl

[6] V.\;A. Klyachin, “On some properties of stable and unstable surfaces with prescribed mean curvature”, Izvestiya: Mathematics, 70:4 (2006), 77–90 | DOI | MR | Zbl

[7] V.\;A. Klyachin, V.\;M. Miklyukov, “On capacity condition for unstability for minimal hypersurfaces”, Doklady Mathematics, 330:4 (1993), 424–426 | MR | Zbl

[8] V.\;A. Klyachin, A.\;A. Shirokiy, “Delaunay triangulation of surfaces and approximations”, Russian Mathematics, 56:1 (2012), 31–39 | MR | Zbl

[9] V.\;A. Klyachin, E.\;A. Pabat, “The $C^1$-approximation of the level surfaces of functions defined on irregular meshes”, Siberiam journal of industrial mathematics, 13:2 (42) (2010), 69–78 | MR | Zbl

[10] Sh. Kobayasi, K. Nomidzu, Foundations of differential geometry, In 2 vols., v. 2, Nauka Publ., M., 1981, 416 pp.

[11] T. Olifant, “Multidimensional iterators NumPy”, Beautiful Code, sb. st., eds. A. Oram, G. Wilson, Piter Publ., SPb., 2011, 341–358

[12] V.\;A. Saranin, Uquilibrium fluids and its stability, In-t kompyuter. issledovaniy Publ., M., 2002, 144 pp.

[13] R. Finn, Uquilibrium capillar surfces. Mathematical theory, Nauka Publ., M., 1989, 312 pp. | MR

[14] H.\;C. Wente, “The stability of the axially symmetric pendant drop”, Pacific J. Math, 88:2 (1980), 421–470 | DOI | MR | Zbl