Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2015_2_a2, author = {V. A. Klyachin and E. G. Grigoreva}, title = {Numerical study of the stability of equilibrium surfaces using {NumPy} package}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {17--30}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/} }
TY - JOUR AU - V. A. Klyachin AU - E. G. Grigoreva TI - Numerical study of the stability of equilibrium surfaces using NumPy package JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2015 SP - 17 EP - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/ LA - ru ID - VVGUM_2015_2_a2 ER -
V. A. Klyachin; E. G. Grigoreva. Numerical study of the stability of equilibrium surfaces using NumPy package. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2015), pp. 17-30. http://geodesic.mathdoc.fr/item/VVGUM_2015_2_a2/
[1] Yu.\;A. Aminov, Minimal surfaces, Series of lectures, Izd-vo KhGU Publ., Kharkov, 1978, 126 pp.
[2] E.\;G. Grigoreva, “Some estimates of principle frequency for Finsler metrics”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 18–22
[3] A.\;A. Klyachin, M.\;A. Gatsunaev, “On uniform convergence of piecewise-linear solutions to minimal surface equation”, Ufa Mathematical Journal, 6:3 (2014), 3–16
[4] A.\;A. Klyachin, “On the rate of convergence of sequences, delivering a minimum in the variational problem”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1 (16), 12–20 | MR
[5] V.\;A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izvestiya: Mathematics, 76:4 (2012), 41–48 | DOI | MR | Zbl
[6] V.\;A. Klyachin, “On some properties of stable and unstable surfaces with prescribed mean curvature”, Izvestiya: Mathematics, 70:4 (2006), 77–90 | DOI | MR | Zbl
[7] V.\;A. Klyachin, V.\;M. Miklyukov, “On capacity condition for unstability for minimal hypersurfaces”, Doklady Mathematics, 330:4 (1993), 424–426 | MR | Zbl
[8] V.\;A. Klyachin, A.\;A. Shirokiy, “Delaunay triangulation of surfaces and approximations”, Russian Mathematics, 56:1 (2012), 31–39 | MR | Zbl
[9] V.\;A. Klyachin, E.\;A. Pabat, “The $C^1$-approximation of the level surfaces of functions defined on irregular meshes”, Siberiam journal of industrial mathematics, 13:2 (42) (2010), 69–78 | MR | Zbl
[10] Sh. Kobayasi, K. Nomidzu, Foundations of differential geometry, In 2 vols., v. 2, Nauka Publ., M., 1981, 416 pp.
[11] T. Olifant, “Multidimensional iterators NumPy”, Beautiful Code, sb. st., eds. A. Oram, G. Wilson, Piter Publ., SPb., 2011, 341–358
[12] V.\;A. Saranin, Uquilibrium fluids and its stability, In-t kompyuter. issledovaniy Publ., M., 2002, 144 pp.
[13] R. Finn, Uquilibrium capillar surfces. Mathematical theory, Nauka Publ., M., 1989, 312 pp. | MR
[14] H.\;C. Wente, “The stability of the axially symmetric pendant drop”, Pacific J. Math, 88:2 (1980), 421–470 | DOI | MR | Zbl