Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the Godunov type method using numerical schemes of the first and second level of precision are compared. Influence of slope limiters and flux computation methods to quality of numerical solution are investigated. Four versions of slope limiters are investigated: minmod, van Leer, van Albada, superbee. Three methods of numerical flux computation also investigated: Lax — Friedrichs, Harten — Lax — van Leer and Harten — Lax — van Leer — Contact. It is shown, that superbee leads to very similar numerical solution quality. Also, the results show, that the use of the MUSCL scheme gives smaller error calculations in $2$ times, regardless of the method numerical solution of Riemann problem. The instability of acoustic waves in active environments are investigated on the basis of the realisation of the method HLLC and MUSCL schemes.The results indicate significant effects of stationary nonequilibrium (generated through its new viscosity-dispersive and nonlinear properties of the medium) on the evolution of the gas-dynamic perturbations.
Keywords: numerical schemes, slope limiters, method of Godunov type, MUSCL, HLLC.
@article{VVGUM_2015_1_a2,
     author = {E. V. Bochkareva and S. S. Khrapov},
     title = {Numerical modeling of the dynamics of sound waves in active environments using the {MUSCL} scheme},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--22},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/}
}
TY  - JOUR
AU  - E. V. Bochkareva
AU  - S. S. Khrapov
TI  - Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 13
EP  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/
LA  - ru
ID  - VVGUM_2015_1_a2
ER  - 
%0 Journal Article
%A E. V. Bochkareva
%A S. S. Khrapov
%T Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 13-22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/
%G ru
%F VVGUM_2015_1_a2
E. V. Bochkareva; S. S. Khrapov. Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 13-22. http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/

[1] M.\;A. Eremin, A.\;V. Khoperskov, S.\;A. Khoperskov, “Finite volume sheme of integration for hydrodynamics equations”, Izv. Volgogr. gos. tekhn. un-ta, 2010, no. 6, Vyp. 8, 24–27

[2] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme based on the combined SPH-TVD appoach: simulation of the shock front”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2(17), 60–67

[3] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical scheme cSPH-TVD: investigation of influence slope limiters”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1, 22–33 | MR

[4] V.\;G. Makaryan, N.\;E. Molevich, “Weak shock waves in nonequilibrium media with negative dispersion”, Technical Physics, 75:6 (2005), 13–18

[5] N.\;E. Molevich, A.\;N. Oraevskiy, “Waves in a medium with a negative second viscosity”, Trudy FIAN SSSR, 222, 1992, 45–95

[6] A.\;I. Osipov, “Nonequilibrium gas”, Sorosovskiy obrazovatelnyy zhurnal, 1998, no. 7, 95–101

[7] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical scheme for the simulation of the dynamics of surface water based on the combined SPH-TVD–approach”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 282–297

[8] K.\;S. Shushkevich, N.\;M. Kuzmin, “Onedimensional numerical scheme for gas-dynamical simulations based on the combined approach SPH-PPM”, Vestnik magistratury, 2013, no. 5 (20), 40–44

[9] B. van. Leer, “Towards the ultimative conservative difference scheme. III. Upstreamcentered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275 | DOI | Zbl

[10] P.\;L. Roe, J. Pike, “Efficient construction and use of approximate Riemann solvers”, Computing Methods in Applied Sciences and Engineering, v. VI, North-Holland, Amsterdam, 1983, 499–518 | MR

[11] E.\;F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 1999, 624 pp. | MR | Zbl

[12] E.\;F. Toro, Godunov Methods: Theory and Applications, Kluwer Academic/Plenum Publ., New York, 2012, 1077 pp. | MR