Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2015_1_a2, author = {E. V. Bochkareva and S. S. Khrapov}, title = {Numerical modeling of the dynamics of sound waves in active environments using the {MUSCL} scheme}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {13--22}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/} }
TY - JOUR AU - E. V. Bochkareva AU - S. S. Khrapov TI - Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2015 SP - 13 EP - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/ LA - ru ID - VVGUM_2015_1_a2 ER -
%0 Journal Article %A E. V. Bochkareva %A S. S. Khrapov %T Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2015 %P 13-22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/ %G ru %F VVGUM_2015_1_a2
E. V. Bochkareva; S. S. Khrapov. Numerical modeling of the dynamics of sound waves in active environments using the MUSCL scheme. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 13-22. http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a2/
[1] M.\;A. Eremin, A.\;V. Khoperskov, S.\;A. Khoperskov, “Finite volume sheme of integration for hydrodynamics equations”, Izv. Volgogr. gos. tekhn. un-ta, 2010, no. 6, Vyp. 8, 24–27
[2] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme based on the combined SPH-TVD appoach: simulation of the shock front”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2(17), 60–67
[3] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical scheme cSPH-TVD: investigation of influence slope limiters”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1, 22–33 | MR
[4] V.\;G. Makaryan, N.\;E. Molevich, “Weak shock waves in nonequilibrium media with negative dispersion”, Technical Physics, 75:6 (2005), 13–18
[5] N.\;E. Molevich, A.\;N. Oraevskiy, “Waves in a medium with a negative second viscosity”, Trudy FIAN SSSR, 222, 1992, 45–95
[6] A.\;I. Osipov, “Nonequilibrium gas”, Sorosovskiy obrazovatelnyy zhurnal, 1998, no. 7, 95–101
[7] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical scheme for the simulation of the dynamics of surface water based on the combined SPH-TVD–approach”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 282–297
[8] K.\;S. Shushkevich, N.\;M. Kuzmin, “Onedimensional numerical scheme for gas-dynamical simulations based on the combined approach SPH-PPM”, Vestnik magistratury, 2013, no. 5 (20), 40–44
[9] B. van. Leer, “Towards the ultimative conservative difference scheme. III. Upstreamcentered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275 | DOI | Zbl
[10] P.\;L. Roe, J. Pike, “Efficient construction and use of approximate Riemann solvers”, Computing Methods in Applied Sciences and Engineering, v. VI, North-Holland, Amsterdam, 1983, 499–518 | MR
[11] E.\;F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin–Heidelberg, 1999, 624 pp. | MR | Zbl
[12] E.\;F. Toro, Godunov Methods: Theory and Applications, Kluwer Academic/Plenum Publ., New York, 2012, 1077 pp. | MR