Error estimate calculation of integral functionals using piecewise linear functions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 6-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the functional given by the integral \begin{equation} I(u)=\int\limits_{\Omega}G(x,u,\nabla u)dx, \end{equation} defined for functions $u\in C^1(\Omega)\cap C(\overline{\Omega})$. Note that the Euler — Lagrange equation of the variational problem for this functional has the form \begin{equation} Q[u]\equiv \sum_{i=1}^n\left(G'_{\xi_i}(x,u,\nabla u)\right)'_{x_i}-G'_u(x,u,\nabla u)=0. \end{equation} Where $G(x,u,\nabla u)=\sqrt{1+|\nabla u|^2}$. Equation (2) is the equation of a minimal surface. Another example is the Poisson equation $\Delta u=f(x)$, which corresponds to the function $G(x,u,\nabla u)=|\nabla u|^2+2f(x)u(x)$. Next, we examine the question of the degree of approximation of the functional (1) by piecewise linear functions. For such problems lead the convergence of variational methods for some boundary value problems. Note that the derivatives of a continuously differentiable function approach derived piecewise linear function with an error of the first order with respect to the diameter of the triangles of the triangulation. We obtain that the value of the integral (1) for functions in $ C ^ 2 $ is possible to bring a greater degree of accuracy. Note also that in [1; 6] estimates the error calculation of the surface triangulation, built on a rectangular grid.
Keywords: piecewise linear functions, approximation of functional, degree of error, fineness of partition.
Mots-clés : triangulation
@article{VVGUM_2015_1_a1,
     author = {A. A. Klyachin},
     title = {Error estimate calculation of integral functionals using piecewise linear functions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--12},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/}
}
TY  - JOUR
AU  - A. A. Klyachin
TI  - Error estimate calculation of integral functionals using piecewise linear functions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 6
EP  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/
LA  - ru
ID  - VVGUM_2015_1_a1
ER  - 
%0 Journal Article
%A A. A. Klyachin
%T Error estimate calculation of integral functionals using piecewise linear functions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 6-12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/
%G ru
%F VVGUM_2015_1_a1
A. A. Klyachin. Error estimate calculation of integral functionals using piecewise linear functions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 6-12. http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/

[1] Gatsunaev M. A., “Approximate calculation of the surface area”, Materialy Nauchnoy sessii (g. Volgograd, 26–30 apr. 2010 g.), Matematika i informatsionnye tekhnologii, 6, 2010, 66–70

[2] L. V. Kantorovich, Approximate methods of higher analysis, Nauka Publ., M., 1950, 696 pp.

[3] A. A. Klyachin, M. A. Gatsunaev, “On uniform convergence of piecewise linear solutions of the minimal surface equation”, Ufa Mathematical Journal, 6:3 (2014), 3–16

[4] V. A. Klyachin, E. A. Pabat, “$C^1$-approximation of the level surfaces of functions defined on irregular grids”, Journal of Applied and Industrial Mathematics, 13:2 (2010), 69–78 | MR | Zbl

[5] S. G. Mikhlinn, Variational methods in mathematical physics, Nauka Publ., M., 1970, 512 pp. | MR

[6] M. S. Floater, A. F. Rasmussen, U. Reif, “Extrapolation methods for approximating arc length and surface area”, Numerical Algorithms, 44:3 (2007), 235–248 | DOI | MR | Zbl