Mots-clés : triangulation
@article{VVGUM_2015_1_a1,
author = {A. A. Klyachin},
title = {Error estimate calculation of integral functionals using piecewise linear functions},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {6--12},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/}
}
A. A. Klyachin. Error estimate calculation of integral functionals using piecewise linear functions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 6-12. http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a1/
[1] Gatsunaev M. A., “Approximate calculation of the surface area”, Materialy Nauchnoy sessii (g. Volgograd, 26–30 apr. 2010 g.), Matematika i informatsionnye tekhnologii, 6, 2010, 66–70
[2] L. V. Kantorovich, Approximate methods of higher analysis, Nauka Publ., M., 1950, 696 pp.
[3] A. A. Klyachin, M. A. Gatsunaev, “On uniform convergence of piecewise linear solutions of the minimal surface equation”, Ufa Mathematical Journal, 6:3 (2014), 3–16
[4] V. A. Klyachin, E. A. Pabat, “$C^1$-approximation of the level surfaces of functions defined on irregular grids”, Journal of Applied and Industrial Mathematics, 13:2 (2010), 69–78 | MR | Zbl
[5] S. G. Mikhlinn, Variational methods in mathematical physics, Nauka Publ., M., 1970, 512 pp. | MR
[6] M. S. Floater, A. F. Rasmussen, U. Reif, “Extrapolation methods for approximating arc length and surface area”, Numerical Algorithms, 44:3 (2007), 235–248 | DOI | MR | Zbl