Mathematical model of electromagnetic drying with boundary conditions of mass transfer on the basis of Dalton's law of evaporation
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 69-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The drying electromagnetic waves with boundary conditions of mass transfer are analyzed on the basis of the laws of Newton and Dalton. In the Newton's model the rate of moisture evaporation from the surface of the sample is proportional to the difference between the current moisture content on the surface and the equilibrium moisture content of material. In the Dalton's model the evaporation rate is proportional to the difference of partial pressure of water vapor through the thickness of the boundary layer. Under conditions of Newton's intensity drying there is a function of moisture content on the surface, and under the conditions of Dalton - the temperature function is on this surface. It is shown that the mass transfer by Newton's law leads to a contradiction of the regularity of the period of constant drying rate. In contrast, the use of boundary conditions of mass transfer on the basis of Dalton's law of evaporation leads to a complete accordance with the experiment. This statement is proved by the direct construction of solutions of initial-boundary value problem for the fields of temperature and moisture content during the electromagnetic drying of the plate.
Keywords: mathematical modeling, electromagnetic drying, Dalton's law of evaporation, period of constant drying rate.
@article{VVGUM_2014_6_a7,
     author = {A. M. Afanasyev and B. N. Siplivyy},
     title = {Mathematical model of electromagnetic drying with boundary conditions of mass transfer on the basis of {Dalton's} law of evaporation},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {69--80},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a7/}
}
TY  - JOUR
AU  - A. M. Afanasyev
AU  - B. N. Siplivyy
TI  - Mathematical model of electromagnetic drying with boundary conditions of mass transfer on the basis of Dalton's law of evaporation
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 69
EP  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a7/
LA  - ru
ID  - VVGUM_2014_6_a7
ER  - 
%0 Journal Article
%A A. M. Afanasyev
%A B. N. Siplivyy
%T Mathematical model of electromagnetic drying with boundary conditions of mass transfer on the basis of Dalton's law of evaporation
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 69-80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a7/
%G ru
%F VVGUM_2014_6_a7
A. M. Afanasyev; B. N. Siplivyy. Mathematical model of electromagnetic drying with boundary conditions of mass transfer on the basis of Dalton's law of evaporation. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 69-80. http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a7/

[1] A.\;M. Afanasyev, B.\;N. Siplivyy, “The Problem of Drying the Ball by Electromagnetic Radiation”, Inzhenerno-fizicheskiy zhurnal, 86:2 (2013), 322–330 | MR

[2] A.\;M. Afanasyev, V.\;V. Podgornyy, B.\;N. Siplivyy, V.\;V. Yatsyshen, “Mathematical Modeling of the Thermal Effects of Intense Microwave Radiation on the Cylindrical Slurry Objects With Layered Structure”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 4:2 (2001), 15–21

[3] A.\;M. Afanasyev, B.\;N. Siplivyy, “Optimizing the Process of Electromagnetic Drying of Capillary and Porous Materials”, Izvestiya vuzov. Elektromekhanika, 2006, no. 5, 3–10

[4] A.\;M. Afanasyev, V.\;V. Podgornyy, B.\;N. Siplivyy, V.\;V. Yatsyshen, “Calculation of Thermal Effects of Microwave Radiation on Flat Water Containing Objects With Layered Structure”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 1:2 (1998), 83–90

[5] A.\;M. Afanasyev, B.\;N. Siplivyy, “The Theory of Electromagnetic Drying: the Asymptotic Solution of the Initial- Boundary Value Problem for a Cylinder”, Teoreticheskie osnovy khimicheskoy tekhnologii, 48:2 (2014), 222–227 | DOI | MR

[6] N.\;G. Kokodiy, V.\;I. Kholodov, “Thermal Processes in Capillary and Porous Bodies With Internal and External Heat Sources”, Inzhenerno-fizicheskiy zhurnal, 73:6 (2000), 1145–1151

[7] A.\;V. Lykov, Theory of Drying, Energiya Publ., M.–L., 1968, 471 pp.

[8] A.\;V. Lykov, Heat and Mass Transfer: A Handbook, Energiya Publ., M., 1978, 480 pp.

[9] A.\;N. Tikhonov, A.\;A. Samarskiy, Equations of Mathematical Physics, Nauka Publ., M., 1966, 724 pp. | MR