Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_6_a6, author = {A. V. Khoperskov and S. S. Khrapov and V. V. Novochadov and D. V. Burnos}, title = {The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {60--68}, publisher = {mathdoc}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/} }
TY - JOUR AU - A. V. Khoperskov AU - S. S. Khrapov AU - V. V. Novochadov AU - D. V. Burnos TI - The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 60 EP - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/ LA - ru ID - VVGUM_2014_6_a6 ER -
%0 Journal Article %A A. V. Khoperskov %A S. S. Khrapov %A V. V. Novochadov %A D. V. Burnos %T The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2014 %P 60-68 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/ %G ru %F VVGUM_2014_6_a6
A. V. Khoperskov; S. S. Khrapov; V. V. Novochadov; D. V. Burnos. The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 60-68. http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/
[1] G.\;V. Avramenko, “The Use of Microwave Radiometry in Screening Non-Palpable Breast Tumors”, Vestnik rengenologii i radiologii, 2007, no. 5, 11–14 | MR
[2] S.\;G. Vesnin, M.\;K. Sedankin, “Development of a Series of Antennas- Applicators for Non-Invasive Measurement of Tissue Temperature of the Human Body in Various Pathologies”, Inzhenernyy zhurnal: nauka i innovatsii, 2012, no. 11, 43–61
[3] S.\;G. Vesnin, A.\;M. Kaplan, R.\;S. Avakyan, “Modern Microwave Radiometry of Mammary Glands”, Meditsinskiy almanakh, 2008, no. 3 (4), 82–87 | MR
[4] A.\;S. Ginzburg, M.\;A. Gromov, G.\;I. Krasovskaya, Thermophysical Properties of Food, Agropromizdat Publ., M., 1990, 287 pp.
[5] S.\;V. Marechek, V.\;M. Polyakov, Yu.\;G. Tishchenko, “Radiometric Methods of Investigation of Temperature of the Surface Layer of Biological Tissue”, Biomeditsinskie tekhnologii i radioelektronika, 2003, no. 8, 57–64
[6] Ch.\;N. Mustafin, “Experience in the Use of Microwave Radiometry in the Diagnostics of Malignant Breast Tumors”, Rossiyskiy onkologicheskiy zhurnal, 2009, no. 4, 36–42
[7] A.\;Yu. Seteykin, I.\;V. Krasnikov, M.\;S. Pavlov, “Three-dimensional model of light propagation in biological tissues”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 11. Meditsina, 2010, no. 3, 166–172
[8] T.\;A. Stavrov, E.\;V. Bukina, A.\;G. Losev, T.\;V. Zamechnik, “Mathematical Model Verification of Early Recurrence of Varicose Veins According to Radiometry Data”, Vestnik novykh meditsinskikh tekhnologiy, 20:2 (2013), 14–18
[9] A.\;V. Ubaychin, “Printed Antenna for Measuring the Internal Temperature of Biological Objects by Applicator Microwave Radiometric Method”, Reports of Tomsk State University of Control Systems and Radioelectronics, 2013, no. 3 (29), 47–52
[10] A.\;H. Barrett, Ph.\;C. Myers, “Subcutaneous Temperature: A method of Non-invasive Sensing”, Science, 190:4215 (1975), 669–671 | DOI
[11] A.\;V. Filatov, A.\;V. Ubaichin, A.\;A. Bombizov, “A two-receiver microwave radiometer with high transfer characteristic linearity”, Measurement Techniques, 55:11 (2013), 1281–1286 | DOI
[12] M. Gautherie, “Temperature and Blood Flow Patterns in Breast Cancer During Natural Evolution and Following Radiotherapy”, Biomedical Thermology, Progress in clinical and biological research, 107, 1982, 21–64
[13] F.\;J. Gonzalez, “Thermal simulation of breast tumors”, Revista mexicana de física, 53:4 (2007), 323–326
[14] P. Kelly, T. Sobers, B.\;S. Peter, P. Siqueira, G. Capraro, “Microwave radiometric signatures of temperature anomalies in tissue”, Medical Imaging 2012: Physics of Medical Imaging, Proceedings of SPIE, 8313, 2012, Article ID 831368 | DOI
[15] P. Kelly, T. Sobers, B.\;S. Peter, P. Siqueira, G. Capraro, “Temperature anomaly detection and estimation using microwave radiometry and anatomical information”, Medical Imaging 2011: Physics of Medical Imaging, Proceedings of SPIE, 7961, 2011, Article ID 79614U | DOI
[16] E.\;Y-K. Ng, N.\;M. Sudharsan, “Computer simulation in conjunction with medical thermography as an adjunct tool for early detection of breast cancer”, BMC Cancer, 4:17 (2004), 1–6 | DOI
[17] D.\;B. Rodrigues et al., “Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism”, Proceedings of SPIE, 8584, 2013, Article ID 85840S, 1–20 | DOI
[18] P.\;R. Stauffer, D.\;B. Rodrigues, P.\;F. Maccarini, “Utility of Microwave Radiometry for Diagnostic and Therapeutic Applications of Non-Invasive Temperature Monitoring”, IEEE BenMAS (Benjamin Franklin Symposium on Microwave and Antenna Sub-systems), 2014 | DOI
[19] V. Umadevi, S.\;V. Raghavan, S. Jaipurkar, “Framework for estimating tumour parameters using thermal imaging”, The Indian Journal of Medical Research, 134:5 (2011), 725–731 | DOI
[20] J.\;W. Valvano, “Tissue Thermal Properties and Perfusion”, Optical-Thermal Response of Laser-Irradiated Tissue, eds. A.\;J. Welch, M.\;J.\;C. van Gemert, Plenum Press, New York, 1995, 445–488 | DOI
[21] P. Wust, C.\;H. Cho, B. Hildebrandt, J. Gellermann, “Thermal monitoring: invasive, minimal-invasive and non-invasive approaches”, International Journal of Hyperthermia, 22:3 (2006), 255–262 | DOI