The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 60-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of complex small-scale structure of the breast in the formation of the temperature distribution due to the strong spatial inhomogeneity of the thermal conductivity and specific heat of various biological components is discussed. Spatial variations in dielectric permittivity and conductivity in biological tissue can significantly affect the brightness temperature of tissues under the antenna. The effectiveness of diagnosis of tumors at an early stage can be improved by moving beyond multi-layer model to the simulation of multicomponent biological tissues with the fine structure and heterogeneous parameters (conductivity, moisture content, specific heat, conductivity, dielectric constant and specific heat).
Keywords: heat transfer, biological tissue, radiative transfer, radiometry, diagnostics, mammary glands.
@article{VVGUM_2014_6_a6,
     author = {A. V. Khoperskov and S. S. Khrapov and V. V. Novochadov and D. V. Burnos},
     title = {The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {60--68},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/}
}
TY  - JOUR
AU  - A. V. Khoperskov
AU  - S. S. Khrapov
AU  - V. V. Novochadov
AU  - D. V. Burnos
TI  - The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 60
EP  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/
LA  - ru
ID  - VVGUM_2014_6_a6
ER  - 
%0 Journal Article
%A A. V. Khoperskov
%A S. S. Khrapov
%A V. V. Novochadov
%A D. V. Burnos
%T The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 60-68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/
%G ru
%F VVGUM_2014_6_a6
A. V. Khoperskov; S. S. Khrapov; V. V. Novochadov; D. V. Burnos. The effect of small-scale mammary glands structure on the distribution of the deep temperature using the microwave radiometry diagnostics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 60-68. http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a6/

[1] G.\;V. Avramenko, “The Use of Microwave Radiometry in Screening Non-Palpable Breast Tumors”, Vestnik rengenologii i radiologii, 2007, no. 5, 11–14 | MR

[2] S.\;G. Vesnin, M.\;K. Sedankin, “Development of a Series of Antennas- Applicators for Non-Invasive Measurement of Tissue Temperature of the Human Body in Various Pathologies”, Inzhenernyy zhurnal: nauka i innovatsii, 2012, no. 11, 43–61

[3] S.\;G. Vesnin, A.\;M. Kaplan, R.\;S. Avakyan, “Modern Microwave Radiometry of Mammary Glands”, Meditsinskiy almanakh, 2008, no. 3 (4), 82–87 | MR

[4] A.\;S. Ginzburg, M.\;A. Gromov, G.\;I. Krasovskaya, Thermophysical Properties of Food, Agropromizdat Publ., M., 1990, 287 pp.

[5] S.\;V. Marechek, V.\;M. Polyakov, Yu.\;G. Tishchenko, “Radiometric Methods of Investigation of Temperature of the Surface Layer of Biological Tissue”, Biomeditsinskie tekhnologii i radioelektronika, 2003, no. 8, 57–64

[6] Ch.\;N. Mustafin, “Experience in the Use of Microwave Radiometry in the Diagnostics of Malignant Breast Tumors”, Rossiyskiy onkologicheskiy zhurnal, 2009, no. 4, 36–42

[7] A.\;Yu. Seteykin, I.\;V. Krasnikov, M.\;S. Pavlov, “Three-dimensional model of light propagation in biological tissues”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 11. Meditsina, 2010, no. 3, 166–172

[8] T.\;A. Stavrov, E.\;V. Bukina, A.\;G. Losev, T.\;V. Zamechnik, “Mathematical Model Verification of Early Recurrence of Varicose Veins According to Radiometry Data”, Vestnik novykh meditsinskikh tekhnologiy, 20:2 (2013), 14–18

[9] A.\;V. Ubaychin, “Printed Antenna for Measuring the Internal Temperature of Biological Objects by Applicator Microwave Radiometric Method”, Reports of Tomsk State University of Control Systems and Radioelectronics, 2013, no. 3 (29), 47–52

[10] A.\;H. Barrett, Ph.\;C. Myers, “Subcutaneous Temperature: A method of Non-invasive Sensing”, Science, 190:4215 (1975), 669–671 | DOI

[11] A.\;V. Filatov, A.\;V. Ubaichin, A.\;A. Bombizov, “A two-receiver microwave radiometer with high transfer characteristic linearity”, Measurement Techniques, 55:11 (2013), 1281–1286 | DOI

[12] M. Gautherie, “Temperature and Blood Flow Patterns in Breast Cancer During Natural Evolution and Following Radiotherapy”, Biomedical Thermology, Progress in clinical and biological research, 107, 1982, 21–64

[13] F.\;J. Gonzalez, “Thermal simulation of breast tumors”, Revista mexicana de física, 53:4 (2007), 323–326

[14] P. Kelly, T. Sobers, B.\;S. Peter, P. Siqueira, G. Capraro, “Microwave radiometric signatures of temperature anomalies in tissue”, Medical Imaging 2012: Physics of Medical Imaging, Proceedings of SPIE, 8313, 2012, Article ID 831368 | DOI

[15] P. Kelly, T. Sobers, B.\;S. Peter, P. Siqueira, G. Capraro, “Temperature anomaly detection and estimation using microwave radiometry and anatomical information”, Medical Imaging 2011: Physics of Medical Imaging, Proceedings of SPIE, 7961, 2011, Article ID 79614U | DOI

[16] E.\;Y-K. Ng, N.\;M. Sudharsan, “Computer simulation in conjunction with medical thermography as an adjunct tool for early detection of breast cancer”, BMC Cancer, 4:17 (2004), 1–6 | DOI

[17] D.\;B. Rodrigues et al., “Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism”, Proceedings of SPIE, 8584, 2013, Article ID 85840S, 1–20 | DOI

[18] P.\;R. Stauffer, D.\;B. Rodrigues, P.\;F. Maccarini, “Utility of Microwave Radiometry for Diagnostic and Therapeutic Applications of Non-Invasive Temperature Monitoring”, IEEE BenMAS (Benjamin Franklin Symposium on Microwave and Antenna Sub-systems), 2014 | DOI

[19] V. Umadevi, S.\;V. Raghavan, S. Jaipurkar, “Framework for estimating tumour parameters using thermal imaging”, The Indian Journal of Medical Research, 134:5 (2011), 725–731 | DOI

[20] J.\;W. Valvano, “Tissue Thermal Properties and Perfusion”, Optical-Thermal Response of Laser-Irradiated Tissue, eds. A.\;J. Welch, M.\;J.\;C. van Gemert, Plenum Press, New York, 1995, 445–488 | DOI

[21] P. Wust, C.\;H. Cho, B. Hildebrandt, J. Gellermann, “Thermal monitoring: invasive, minimal-invasive and non-invasive approaches”, International Journal of Hyperthermia, 22:3 (2006), 255–262 | DOI