Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 6-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The advances and current problems in the numerical simulations of chemical processes in the interstellar and intergalactic medium are described. The special attention is paid to coupled simulation of non-equilibrium chemical kinetics and gas dynamics. The code for self-consistent simulation of dynamical and chemical processes in the interstellar medium is presented.
Keywords: interstellar medium, intergalactic medium, chemical kinetics, gas dynamics, numerical methods, molecules
Mots-clés : ions.
@article{VVGUM_2014_6_a1,
     author = {E. O. Vasilyev and M. A. Eremin and V. V. Korolev},
     title = {Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--17},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/}
}
TY  - JOUR
AU  - E. O. Vasilyev
AU  - M. A. Eremin
AU  - V. V. Korolev
TI  - Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 6
EP  - 17
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/
LA  - ru
ID  - VVGUM_2014_6_a1
ER  - 
%0 Journal Article
%A E. O. Vasilyev
%A M. A. Eremin
%A V. V. Korolev
%T Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 6-17
%N 6
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/
%G ru
%F VVGUM_2014_6_a1
E. O. Vasilyev; M. A. Eremin; V. V. Korolev. Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/

[1] N.\;G. Bochkarev, Fundamentals of Physics of the Interstellar Medium, Librokom Publ., M., 2010, 352 pp.

[2] E.\;O. Vasilyev, S.\;Yu. Dedikov, Yu.\;A. Shchekinov, “Chemical Inhomogeniety of Post-Ionized Universe”, Astrofizicheskiy byulleten, 64:4 (2009), 333–340

[3] M.\;A. Eremin, E.\;O. Vasilyev, V.\;N. Lyubimov, “Astrochemhydro: a Parallel Code for Numerical Simulations of Chemical and Dynamical Evolution of Interstellar Medium”, Vestnik UGATU, 16:3 (48) (2012), 99–107 | MR

[4] Ya.\;B. Zeldovich, Yu.\;P. Rayzer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka Publ., M., 1966, 688 pp.

[5] E. Oran, Dzh. Boris, Numerical Simulation of Reactive Flows, Mir Publ., M., 1990, 660 pp. | MR

[6] A.\;A. Suchkov, Yu.\;A. Shchekinov, “Ionic Composition of Cooled Interstellar Gas With Variable Density”, Astronomicheskiy zhurnal, 63 (1986), 470–475 | Zbl

[7] T. Abel, P. Anninos, Yu. Zhang, M.\;L. Norman, “Modeling primordial gas in numerical cosmology”, New Astronomy, 2:3 (1997), 181–207 | DOI

[8] P. Anninos, Yu. Zhang, T. Abel, M.\;L. Norman, “Cosmological Hydrodynamics with Multi-Species Chemistry and Nonequilibrium Ionization and Cooling”, New Astronomy, 2:3 (1997), 209–224 | DOI | MR

[9] M.\;A. Avillez, D. Breitschwerdt, “NEI Modelling of the ISM—Turbulent Dissipation and Hausdorff Dimension”, Highlights of Astronomy, 15, 2009, 468–469

[10] J. le Bourlot, G. Pineau des Forets, D. Flower, “The Cooling of Astrophysical Media by $H_2$”, Monthly Notices of the Royal Astronomical Society, 305 (1999), 802–810 | DOI

[11] P.\;N. Brown, G.\;D. Byrne, A.\;C. Hindmarsh, “VODE: a Variable-Coefcient ODE Solver”, SIAM J. Sci. Stat. Comput., 10:5 (1989), 1038–1051 | DOI | MR | Zbl

[12] P. Bryans, N.\;R. Badnell, T.\;W. Gorczyca, J.\;M. Laming, W. Mitthumsiri, D.\;W. Savin, “Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare through Sodium-like Ions”, Astrophysical Journal Supplement Series, 167 (2006), 343–356 | DOI

[13] F. Combes, “Distribution of CO in the Milky Way”, Annual Review of Astronomy and Astrophysics, 29 (1991), 195–237 | DOI

[14] R. Crain, T. Theuns, C. Vecchia, V. Eke, C. Frenk, A. Jenkins, S. Kay, J. Peacock, F. Pearce, J. Schaye, V. Springel, P. Thomas, S. White, R. Wiersma, “Galaxies-Intergalactic Medium Interaction Calculation—I. Galaxy Formation as a Function of Large-Scale Environment”, Monthly Notices of the Royal Astronomical Society, 399 (2009), 1773–1794 | DOI

[15] G.\;J. Ferland, K.\;T. Korista, D.\;A. Verner, J.\;W. Ferguson, J.\;B. Kingdon, E.\;M. Verner, “CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra”, Publications of the Astronomical Society of the Pacific, 110:749 (1998), 761–778 | DOI

[16] D. Galli, F. Palla, “The Chemistry of the Early Universe”, Astronomy and Astrophysics, 335 (1998), 403–420

[17] S.\;C.\;O. Glover, P.\;C. Clark, “Approximations for Modelling CO Chemistry in Giant Molecular Clouds: a Comparison of Approaches”, Monthly Notices of the Royal Astronomical Society, 421 (2012), 116–131

[18] S.\;C.\;O. Glover, C. Federrath, M.-M. Mac Low, R.\;S. Klessen, “Modelling CO Formation in the Turbulent Interstellar Medium”, Monthly Notices of the Royal Astronomical Society, 404 (2010), 2–29

[19] S.\;C.\;O. Glover, M.-M. Mac Low, “Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions”, Astrophysical Journal, 659 (2007), 1317–1337 | DOI

[20] O. Gnat, A. Sternberg, “Time-Dependent Ionization in Radiatively Cooling Gas”, Astrophysical Journal Supplement Series, 168 (2007), 213–230 | DOI

[21] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics, 49:3 (1983), 357–593 | DOI | MR

[22] A.\;C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers”, Scientific Computing, North-Holland Publishing Company, Amsterdam, 1983, 55–64 | MR

[23] D. Hollenbach, C.\;F. McKee, “Molecule Formation and Infrared Emission in Fast Interstellar Shocks. I Physical Processes”, Astrophysical Journal Supplement Series, 41 (1979), 555–592 | DOI

[24] M. Kafatos, “Time-Dependent Radiative Cooling of a Hot Low-Density Cosmic Gas”, Astrophysical Journal, 182 (1973), 433–448 | DOI

[25] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's methods”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR

[26] R.\;P. Nelson, W. Langer, “On the Stability and Evolution of Isolated BOK Globules”, Astrophysical Journal, 524:2 (1999), 923–946 | DOI

[27] R.\;P. Nelson, W. Langer, “The Dynamics of Low-Mass Molecular Clouds in External Radiation Fields”, Astrophysical Journal, 482:2 (1997), 796–826 | DOI

[28] D.\;A. Neufeld, A. Dalgarno, “Fast molecular shocks. I—Reformation of molecules behind a dissociative shock”, Astrophysical Journal, 340 (1989), 869–893 | DOI

[29] A. Omont, “Molecules in galaxies”, Reports on Progress in Physics, 70:7 (2007), 1099–1176 | DOI

[30] K. Omukai, T. Tsuribe, R. Schneider, A. Ferrara, “Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments”, Astrophysical Journal, 626:2 (2005), 627–643 | DOI

[31] D.\;E. Osterbrook, G.\;J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, 2006

[32] F. Palla, S.\;W. Stahler, E.\;E. Salpeter, “Primordial Star Formation—The Role of Molecular Hydrogen”, Astrophysical Journal, 271 (1983), 632–641 | DOI

[33] W.\;H. Press, S.\;A. Teukolsky, W.\;T. Vetterling, B.\;P. Flannery, Numerical Recipes in Fortran 90, Cambridge Univ. Press, Cambridge, 500 pp. | MR

[34] J.\;C. Raymond, D.\;P. Cox, B.\;W. Smith, “Radiative Cooling of a Low-Density Plasma”, Astrophysical Journal, 204 (1976), 290–292 | DOI

[35] M.\;J. Rees, J.\;P. Ostriker, “Cooling, Dynamics and Fragmentation of Massive Gas Clouds—Clues to the Masses and Radii of Galaxies and clusters”, Monthly Notices of the Royal Astronomical Society, 179 (1977), 541–559 | DOI

[36] W.\;C. Saslaw, D. Zipoy, “Molecular Hydrogen in Pre-galactic Gas Clouds”, Nature, 216:5119 (1967), 976–978 | DOI

[37] J. Scalo, B.\;G. Elmegreen, “Interstellar Turbulence II: Implications and Effects”, Annual Review of Astronomy Astrophysics, 42 (2004), 275–316 | DOI

[38] R.\;A. Simcoe, W.\;L.\;W. Sargent, M. Rauch, G. Becker, “Observations of Chemically Enriched QSO Absorbers near $z\sim 2.3$ Galaxies: Galaxy Formation Feedback Signatures in the Intergalactic Medium”, Astrophysical Journal, 637:2 (2006), 648–668 | DOI

[39] R.\;S. Sutherland, M.\;A. Dopita, “Cooling Functions for Low-Density Astrophysical Plasmas”, Astrophysical Journal Supplement Series, 88:1 (1993), 253–327 | DOI | MR

[40] M. Tegmark, J. Silk, M.\;J. Rees, T. Abel, F. Palla, How Small Were the First Cosmological Objects?, Astrophysical Journal, 474:1 (1997), 1–12 | DOI | MR

[41] E.\;F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin, 1997, 624 pp. | MR | Zbl

[42] E.\;O. Vasiliev, M.\;V. Ryabova, Yu.\;A. Shchekinov, “Extended OVI haloes of Starforming Galaxies”, Monthly Notices of the Royal Astronomical Society, 446:3 (2015), 3078–3088 | DOI

[43] E.\;O. Vasiliev, “Non-Equilibrium Ionization States and Cooling Rates of the Photoionized Enriched Gas”, Monthly Notices of the Royal Astronomical Society, 414:4 (2011), 3145–3157 | DOI

[44] D. Wiebe, D. Semenov, Th. Henning, “Reduction of Chemical Networks. I. The Case of Molecular Clouds”, Astronomy and Astrophysics, 399:1 (2003), 197–210 | DOI

[45] R. Wiersma, J. Schaye, B.\;D. Smith, “The Effect of Photoionization on the Cooling Rates of Enriched, Astrophysical Plasmas”, Monthly Notices of the Royal Astronomical Society, 393:1 (2009), 99–107 | DOI