Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The advances and current problems in the numerical simulations of chemical processes in the interstellar and intergalactic medium are described. The special attention is paid to coupled simulation of non-equilibrium chemical kinetics and gas dynamics. The code for self-consistent simulation of dynamical and chemical processes in the interstellar medium is presented.
Keywords: interstellar medium, intergalactic medium, chemical kinetics, gas dynamics, numerical methods, molecules
Mots-clés : ions.
@article{VVGUM_2014_6_a1,
     author = {E. O. Vasilyev and M. A. Eremin and V. V. Korolev},
     title = {Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--17},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/}
}
TY  - JOUR
AU  - E. O. Vasilyev
AU  - M. A. Eremin
AU  - V. V. Korolev
TI  - Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 6
EP  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/
LA  - ru
ID  - VVGUM_2014_6_a1
ER  - 
%0 Journal Article
%A E. O. Vasilyev
%A M. A. Eremin
%A V. V. Korolev
%T Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 6-17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/
%G ru
%F VVGUM_2014_6_a1
E. O. Vasilyev; M. A. Eremin; V. V. Korolev. Numerical models of the interstellar and intergalactic media: non-equilibrium chemical kinetics in gas dynamics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2014), pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2014_6_a1/

[1] N.\;G. Bochkarev, Fundamentals of Physics of the Interstellar Medium, Librokom Publ., M., 2010, 352 pp.

[2] E.\;O. Vasilyev, S.\;Yu. Dedikov, Yu.\;A. Shchekinov, “Chemical Inhomogeniety of Post-Ionized Universe”, Astrofizicheskiy byulleten, 64:4 (2009), 333–340

[3] M.\;A. Eremin, E.\;O. Vasilyev, V.\;N. Lyubimov, “Astrochemhydro: a Parallel Code for Numerical Simulations of Chemical and Dynamical Evolution of Interstellar Medium”, Vestnik UGATU, 16:3 (48) (2012), 99–107 | MR

[4] Ya.\;B. Zeldovich, Yu.\;P. Rayzer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka Publ., M., 1966, 688 pp.

[5] E. Oran, Dzh. Boris, Numerical Simulation of Reactive Flows, Mir Publ., M., 1990, 660 pp. | MR

[6] A.\;A. Suchkov, Yu.\;A. Shchekinov, “Ionic Composition of Cooled Interstellar Gas With Variable Density”, Astronomicheskiy zhurnal, 63 (1986), 470–475 | Zbl

[7] T. Abel, P. Anninos, Yu. Zhang, M.\;L. Norman, “Modeling primordial gas in numerical cosmology”, New Astronomy, 2:3 (1997), 181–207 | DOI

[8] P. Anninos, Yu. Zhang, T. Abel, M.\;L. Norman, “Cosmological Hydrodynamics with Multi-Species Chemistry and Nonequilibrium Ionization and Cooling”, New Astronomy, 2:3 (1997), 209–224 | DOI | MR

[9] M.\;A. Avillez, D. Breitschwerdt, “NEI Modelling of the ISM—Turbulent Dissipation and Hausdorff Dimension”, Highlights of Astronomy, 15, 2009, 468–469

[10] J. le Bourlot, G. Pineau des Forets, D. Flower, “The Cooling of Astrophysical Media by $H_2$”, Monthly Notices of the Royal Astronomical Society, 305 (1999), 802–810 | DOI

[11] P.\;N. Brown, G.\;D. Byrne, A.\;C. Hindmarsh, “VODE: a Variable-Coefcient ODE Solver”, SIAM J. Sci. Stat. Comput., 10:5 (1989), 1038–1051 | DOI | MR | Zbl

[12] P. Bryans, N.\;R. Badnell, T.\;W. Gorczyca, J.\;M. Laming, W. Mitthumsiri, D.\;W. Savin, “Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare through Sodium-like Ions”, Astrophysical Journal Supplement Series, 167 (2006), 343–356 | DOI

[13] F. Combes, “Distribution of CO in the Milky Way”, Annual Review of Astronomy and Astrophysics, 29 (1991), 195–237 | DOI

[14] R. Crain, T. Theuns, C. Vecchia, V. Eke, C. Frenk, A. Jenkins, S. Kay, J. Peacock, F. Pearce, J. Schaye, V. Springel, P. Thomas, S. White, R. Wiersma, “Galaxies-Intergalactic Medium Interaction Calculation—I. Galaxy Formation as a Function of Large-Scale Environment”, Monthly Notices of the Royal Astronomical Society, 399 (2009), 1773–1794 | DOI

[15] G.\;J. Ferland, K.\;T. Korista, D.\;A. Verner, J.\;W. Ferguson, J.\;B. Kingdon, E.\;M. Verner, “CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra”, Publications of the Astronomical Society of the Pacific, 110:749 (1998), 761–778 | DOI

[16] D. Galli, F. Palla, “The Chemistry of the Early Universe”, Astronomy and Astrophysics, 335 (1998), 403–420

[17] S.\;C.\;O. Glover, P.\;C. Clark, “Approximations for Modelling CO Chemistry in Giant Molecular Clouds: a Comparison of Approaches”, Monthly Notices of the Royal Astronomical Society, 421 (2012), 116–131

[18] S.\;C.\;O. Glover, C. Federrath, M.-M. Mac Low, R.\;S. Klessen, “Modelling CO Formation in the Turbulent Interstellar Medium”, Monthly Notices of the Royal Astronomical Society, 404 (2010), 2–29

[19] S.\;C.\;O. Glover, M.-M. Mac Low, “Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions”, Astrophysical Journal, 659 (2007), 1317–1337 | DOI

[20] O. Gnat, A. Sternberg, “Time-Dependent Ionization in Radiatively Cooling Gas”, Astrophysical Journal Supplement Series, 168 (2007), 213–230 | DOI

[21] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, Journal of Computational Physics, 49:3 (1983), 357–593 | DOI | MR

[22] A.\;C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers”, Scientific Computing, North-Holland Publishing Company, Amsterdam, 1983, 55–64 | MR

[23] D. Hollenbach, C.\;F. McKee, “Molecule Formation and Infrared Emission in Fast Interstellar Shocks. I Physical Processes”, Astrophysical Journal Supplement Series, 41 (1979), 555–592 | DOI

[24] M. Kafatos, “Time-Dependent Radiative Cooling of a Hot Low-Density Cosmic Gas”, Astrophysical Journal, 182 (1973), 433–448 | DOI

[25] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's methods”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR

[26] R.\;P. Nelson, W. Langer, “On the Stability and Evolution of Isolated BOK Globules”, Astrophysical Journal, 524:2 (1999), 923–946 | DOI

[27] R.\;P. Nelson, W. Langer, “The Dynamics of Low-Mass Molecular Clouds in External Radiation Fields”, Astrophysical Journal, 482:2 (1997), 796–826 | DOI

[28] D.\;A. Neufeld, A. Dalgarno, “Fast molecular shocks. I—Reformation of molecules behind a dissociative shock”, Astrophysical Journal, 340 (1989), 869–893 | DOI

[29] A. Omont, “Molecules in galaxies”, Reports on Progress in Physics, 70:7 (2007), 1099–1176 | DOI

[30] K. Omukai, T. Tsuribe, R. Schneider, A. Ferrara, “Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments”, Astrophysical Journal, 626:2 (2005), 627–643 | DOI

[31] D.\;E. Osterbrook, G.\;J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, 2006

[32] F. Palla, S.\;W. Stahler, E.\;E. Salpeter, “Primordial Star Formation—The Role of Molecular Hydrogen”, Astrophysical Journal, 271 (1983), 632–641 | DOI

[33] W.\;H. Press, S.\;A. Teukolsky, W.\;T. Vetterling, B.\;P. Flannery, Numerical Recipes in Fortran 90, Cambridge Univ. Press, Cambridge, 500 pp. | MR

[34] J.\;C. Raymond, D.\;P. Cox, B.\;W. Smith, “Radiative Cooling of a Low-Density Plasma”, Astrophysical Journal, 204 (1976), 290–292 | DOI

[35] M.\;J. Rees, J.\;P. Ostriker, “Cooling, Dynamics and Fragmentation of Massive Gas Clouds—Clues to the Masses and Radii of Galaxies and clusters”, Monthly Notices of the Royal Astronomical Society, 179 (1977), 541–559 | DOI

[36] W.\;C. Saslaw, D. Zipoy, “Molecular Hydrogen in Pre-galactic Gas Clouds”, Nature, 216:5119 (1967), 976–978 | DOI

[37] J. Scalo, B.\;G. Elmegreen, “Interstellar Turbulence II: Implications and Effects”, Annual Review of Astronomy Astrophysics, 42 (2004), 275–316 | DOI

[38] R.\;A. Simcoe, W.\;L.\;W. Sargent, M. Rauch, G. Becker, “Observations of Chemically Enriched QSO Absorbers near $z\sim 2.3$ Galaxies: Galaxy Formation Feedback Signatures in the Intergalactic Medium”, Astrophysical Journal, 637:2 (2006), 648–668 | DOI

[39] R.\;S. Sutherland, M.\;A. Dopita, “Cooling Functions for Low-Density Astrophysical Plasmas”, Astrophysical Journal Supplement Series, 88:1 (1993), 253–327 | DOI | MR

[40] M. Tegmark, J. Silk, M.\;J. Rees, T. Abel, F. Palla, How Small Were the First Cosmological Objects?, Astrophysical Journal, 474:1 (1997), 1–12 | DOI | MR

[41] E.\;F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin, 1997, 624 pp. | MR | Zbl

[42] E.\;O. Vasiliev, M.\;V. Ryabova, Yu.\;A. Shchekinov, “Extended OVI haloes of Starforming Galaxies”, Monthly Notices of the Royal Astronomical Society, 446:3 (2015), 3078–3088 | DOI

[43] E.\;O. Vasiliev, “Non-Equilibrium Ionization States and Cooling Rates of the Photoionized Enriched Gas”, Monthly Notices of the Royal Astronomical Society, 414:4 (2011), 3145–3157 | DOI

[44] D. Wiebe, D. Semenov, Th. Henning, “Reduction of Chemical Networks. I. The Case of Molecular Clouds”, Astronomy and Astrophysics, 399:1 (2003), 197–210 | DOI

[45] R. Wiersma, J. Schaye, B.\;D. Smith, “The Effect of Photoionization on the Cooling Rates of Enriched, Astrophysical Plasmas”, Monthly Notices of the Royal Astronomical Society, 393:1 (2009), 99–107 | DOI