Beltrami equations with degenerate on arcs
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2014), pp. 24-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the recent paper [5] were obtained some conditions for the existence and uniqueness of solutions with singularity of the associated equation with the Beltrami equation \begin{equation} f_{\overline{z}}(z)=\mu(z)f_{z}(z).\tag{*} \end{equation} Here we gave geometric interpretation this results. The main results are as follows. Let $D\subset\mathbb{C}$ be a simply connected domain divided by curve $E\subset D$ of class ${\rm C}^{(3)}$ into two subdomain $D_1$, $D_2$. Theorem 1. Suppose that $\mu(z)$ can be represented in the form $$ \mu(z)=(1+\tilde{M}(z)\rho(d_E (z)))\mathop{\mathrm{e}^{2i\theta(z)}}, $$ where: 1) function $\rho (t)$ is continuous on $[0, +\infty)$, and $\rho(0)=0$ and $\rho(t)>0$ for $t\ne0$; 2) function $\theta(z)\in{\rm C}^{(1)}(D)$ is such that everywhere on $E$ $$ dz +\mathop{\mathrm{e}^{2i\theta (z)}}\overline{dz}\ne 0, \label{Kondriuslovichsl} $$ at $dz$ tangential to $E$; 3) complex-valued function $\tilde{M}(z)$ is measurable and almost everywhere in $D$ $$ \frac{1}{R}\leq|\mathrm{Re}\,\tilde{M}(z)|\leq R, \ |\mathrm{Im} \, \tilde{M}(z)|\leq R \ \ (R\equiv\mathrm{const}). $$ Then in some neighborhood of $O(E)$, there exists an solution with a singularity $E$ of the equation associated with the (*). Theorem 2. Suppose that 1) $H(z)\in{\rm C}^{1}(D)$, $\nabla H(z)\ne 0$ in $D$ and $E$ defined by the equation $H(z)=0$; 2) the function $\mu(z)$ can be written as: $$ \mu(z)=\frac{\nabla H}{\overline{\nabla H}}+M^{*}(z)\rho(|H(z)|), $$ where: 1) the function $\rho(t)$ is continuous on $[0, +\infty)$; 2) $\rho(0)=0$ and $\rho(t)>0$ for $t\ne0$, and $\frac{1}{\rho(t)}$ has an integrable singularity at zero; 3) $M^{*}(z)$ is complex-valued measurable function in $D$, and $$ \Bigl|\mathrm{Re} \,\Bigl(\frac{\overline{\nabla H(z)}}{\nabla H(z)} M^{*}(z)\Bigr)\Bigr|\geq\frac{1}{C_1}, \ \ |M^{*}(z)|\leq C_2 \ \ (C_1, \; C_2\equiv\mathrm{const}). $$ Then in some neighborhood of $O(E)$, there exists an solution with a singularity $E$ of the equation associated with the (*). Corollary. Assume that $$ \mu(z)=\frac{\nabla d_E (z)}{\overline{\nabla d_E (z)}}+M^{*}(z) \rho(d_E(z)), $$ where: 1) the function $\rho(t)$ is continuous on $[0, +\infty)$; 2) $\rho(0)=0$ and $\rho(t)>0$ for $t\ne0$, and $\frac{1}{\rho(t)}$ has an integrable singularity at zero; 3) $M^{*}(z)$ is complex-valued measurable function in $D$, and $$ \Bigl|\mathrm{Re} \, \Bigl( \frac{\overline{\nabla d_E(z)}}{\nabla d_E(z)}M^{*}(z)\Bigr) \Bigr|\geq\frac{1}{C_1}, \ \ |M^{*}(z)|\leq C_2 \ (C_1,\; C_2\equiv\mathrm{const}).\nonumber $$ Then in some neighborhood of $O(E)$, there exists an solution with a singularity $E$ of the equation associated with the (*).
Keywords: degenerate Beltrami equation, Beltrami equation of variable type, folds, solution with singularity, associated equation.
@article{VVGUM_2014_5_a2,
     author = {A. N. Kondrashov},
     title = {Beltrami equations with degenerate on arcs},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {24--39},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_5_a2/}
}
TY  - JOUR
AU  - A. N. Kondrashov
TI  - Beltrami equations with degenerate on arcs
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 24
EP  - 39
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_5_a2/
LA  - ru
ID  - VVGUM_2014_5_a2
ER  - 
%0 Journal Article
%A A. N. Kondrashov
%T Beltrami equations with degenerate on arcs
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 24-39
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_5_a2/
%G ru
%F VVGUM_2014_5_a2
A. N. Kondrashov. Beltrami equations with degenerate on arcs. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2014), pp. 24-39. http://geodesic.mathdoc.fr/item/VVGUM_2014_5_a2/

[1] P.\;P. Belinskiy, General Properties of Quasiconformal Mappings, Nauka. Sib. otd-nie Publ., Novosibirsk, 1974, 100 pp.

[2] I.\;N. Vekua, Generalized analytic functions, Nauka Publ., M., 1988, 512 pp.

[3] L.\;I. Volkovyski\v{i}, “Some problems of the theory of quasiconformal mappings”, Some Problems of Mathematics and Mechanics (to the seventieth birthday of M. A. Lavrent'ev), Nauka Publ., L., 1970, 128–134

[4] V.\;M. Goldshteyn, Yu.\;G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1983, 284 pp.

[5] A.\;N. Kondrashov, “On the theory of degenerate alternating beltrami equations”, Siberian Mathematical Journal, 53:6 (2012), 1321–1337

[6] A.\;N. Kondrashov, “On the theory of alternating Beltrami equation with many folds”, Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 26–35

[7] V.\;M. Miklyukov, “Isothermic coordinates on singular surfaces”, Sbornik: Mathematics, 195:1 (2004), 69–88

[8] E.\;Kh. Yakubov, “Solutions of Beltrami’s equation with degeneration”, Doklady Mathematics, 243:5 (1978), 1148–1149

[9] M. Lavrentieff, “Sur une classe de representation continues”, Mat. sb., 42:4 (1935), 407–424 ; М.\;А. Лаврентьев, “Об одном классе непрерывных отображений”, Избранные труды. Математика и механика, Наука, М., 1990, 219–237

[10] O. Martio, V.\;M. Miklyukov, “On existence and uniqueness of degenerate Beltrami equations”, Complex Variables, 49:7–9 (2004), 647–656

[11] U. Srebro, E. Yakubov, “Branched folded maps and alternating Beltrami equations”, Journal d'analyse mathematique, 70 (1996), 65–90

[12] U. Srebro, E. Yakubov, “Uniformization of maps with folds”, Israel mathematical conference proceedings, 11, 1997, 229–232

[13] U. Srebro, E. Yakubov, “$\mu$-Homeomorphisms”, Lipa's Legacy, Contemporary Mathematics, 211, AMS, 1997, 473–479