Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_4_a5, author = {A. S. Vasyura and M. A. Butenko and N. M. Kuzmin}, title = {Boundary conditions for simulation of compressible gas by {SPH} method}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {53--67}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a5/} }
TY - JOUR AU - A. S. Vasyura AU - M. A. Butenko AU - N. M. Kuzmin TI - Boundary conditions for simulation of compressible gas by SPH method JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 53 EP - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a5/ LA - ru ID - VVGUM_2014_4_a5 ER -
%0 Journal Article %A A. S. Vasyura %A M. A. Butenko %A N. M. Kuzmin %T Boundary conditions for simulation of compressible gas by SPH method %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2014 %P 53-67 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a5/ %G ru %F VVGUM_2014_4_a5
A. S. Vasyura; M. A. Butenko; N. M. Kuzmin. Boundary conditions for simulation of compressible gas by SPH method. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 53-67. http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a5/
[1] N.\;S. Bahvalov, N.\;P. Zhidkov, G.\;M. Kobelkov, The numerical methods, Nauka Publ., M., 1987, 640 pp.
[2] A.\;G. Kulikovsky, N.\;V. Pogorelov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Fizmatlit Publ., M., 2001, 608 pp.
[3] L.\;G. Loytsyanskiy, Fluid Mechanics: a textbook for high schools, Ucheb. dlya vuzov, Nauka Publ., M., 1987, 153 pp.
[4] A.\;G. Morozov, A.\;V. Khoperskov, Physics disks, Izd-vo VolGU Publ., Volgograd, 2005, 423 pp.
[5] L.\;I. Sedov, Continuum Mechanics, Nauka Publ., M., 1978, 560 pp.
[6] A.\;V. Khoperskov, M.\;A. Eremin, S.\;A. Khoperskov, M.\;A. Butenko, A.\;G. Morozov, “Dynamics of the gas disk in the dark halo axisymmetrical”, Astronomy Reports, 89:1 (2012), 19–31
[7] G. Falkovich, Fluid Mechanics: A Short Course for Physicists, Cambridge University Press, Cambridge, 2011, 32 pp.
[8] R.\;A. Gingold, J.\;J. Monaghan, “Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars”, Monthly Notices of the Royal Astronomical Society, 181:3 (1977), 375–389
[9] M.\;B. Liu, G.\;R. Liu, K.\;Y. Lam, “Constructing smoothing functions in smoothed particle hydrodynamics with applications”, Journal of Computational and Applied Mathematics, 155:2 (2003), 263–284
[10] G.\;R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, 2003, 388–406
[11] J.\;J. Monaghan, “Smoothed Particles Hydrodynamics”, Annual Review of Astronomy and Astrophysics, 30 (1992), 543–574
[12] J.\;J. Monaghan, J.\;C. Lattanzio, “A refined particle method for astrophysical problems”, Annual Review of Astronomy and Astrophysics, 149 (1985), 135–143
[13] J.\;P. Morris, P.\;J. Fox, Y. Zhu, “Modelling Low Reynolds Number Incompressible Flows Using SPH”, Comp. Physics, 136:1 (1997), 214–266
[14] M. Müller, D. Charypar, M. Gross, “Particle-Based Fluid Simulation for Interactive Applications”, Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2003, 154–159
[15] J. von Neumann, R.\;D. Richtmyer, “A method for the numerical calculation of hydrodynamics shocks”, Journal of Applied Physics, 21:3 (1950), 232–237
[16] Harada Takahiro, Koshizuka Seiichi, Kawaguchi Yoichiro, “Improvement of the boundary conditions in Smoothed Particle Hydrodynamics”, Computer Graphics and Geometry, 9:3 (2007), 2–15