Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_4_a4, author = {V. A. Shlyk}, title = {On the weighted equivalence of open sets in $R^n$}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {47--52}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a4/} }
V. A. Shlyk. On the weighted equivalence of open sets in $R^n$. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 47-52. http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a4/
[1] V.\;V. Aseev, A.\;V. Sychev, “On the removable sets for space quasiconformal mappings”, Siberian Mathematical Journal, 15:6 (1974), 1213–1227
[2] S.\;K. Vodopyanov, V.\;M. Goldshteyn, “Criteria of removability of sets for the spaces $L^1_p$, quasiconformal and quasiisometric mappings”, Siberian Mathematical Journal, 18:1 (1977), 48–68
[3] I.\;N. Demshin, Yu.\;V. Dymchenko, V.\;A. Shlyk, “The null-sets criteria for the weighted Sobolev spaces”, J. of Math. Sciences, 276 (2001), 52–82
[4] Yu.\;V. Dymchenko, V.\;A. Shlyk, “The sufficiency of families of polygonal curves in the moduli method and removable sets”, Siberian Mathematical Journal, 51:6 (2010), 1298–1315
[5] P.\;A. Pugach, V.\;A. Shlyk, “Generalized capacities and polyhedral surfaces”, J. of Math. Sciences, 383 (2010), 148–178
[6] G. Federer, Geometric measure theory, Nauka Publ., M., 1987, 760 pp.
[7] L. Ahlfors, A. Beurling, “Conformal invariants and functions-theoretic null-sets”, Acta Math., 83:1 (1950), 101–129
[8] B. Muckenhoupt, “The equivalence of two conditions for weight functions”, Studia Math., 49:2 (1974), 101–106
[9] J. Väisälä, “On the null-sets for extremal distances”, Ann. acad. Sci. Fenn. Ser. I. Math., 322 (1962), 1–12