Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_4_a3, author = {E. A. Mazepa}, title = {On}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {36--46}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a3/} }
E. A. Mazepa. On. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 36-46. http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a3/
[1] D. Gilbarg, M. Trudinger, Elliptic partial differential equations of second order, Nauka Publ., M., 2007, 464 pp.
[2] V.\;A. Kondratev, E.\;M. Landis, “On qualitative properties of solutions of a nonlinear second-order equatio”, Sbornik: Mathematics, 135 (177):3 (1988), 346–360
[3] A.\;A. Konkov, “Behavior of solutions of quasilinear elliptic inequalities”, Partial differential equations, Sovremennaya matematika. Fundamentalnye napravleniya, 7, 2004, 3–158
[4] S.\;A. Korolkov, A.\;G. Losev, “Solutions for elliptic equations on Riemannian manifolds with ends”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 23–40
[5] A.\;G. Losev, “Some Liouville theorems on noncompact Riemannian manifolds”, Siberian Mathematical Journal, 39:1 (1998), 87–93
[6] A.\;G. Losev, E.\;A. Mazepa, “On the asymptotic behavior of solutions of certain equations elliptic type on noncompact Riemannian manifolds”, Soviet Mathematics, 1999, no. 6 (445), 41–49
[7] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110
[8] E.\;A. Mazepa, “Boundary value problems for the stationary equation Schrödinger on Riemannian manifolds”, Siberian Mathematical Journal, 43:3 (2002), 591–599
[9] E.\;A. Mazepa, “Boundary Value Problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds”, Soviet Mathematics, 2005, no. 3 (514), 59–66
[10] E.\;A. Mazepa, “On the existence of entire solutions of a semilinear elliptic equation on noncompact Riemannian manifolds”, Mathematical Notes, 81:1 (2007), 153–156
[11] E.\;A. Mazepa, “On the asymptotic behavior of solutions of some semilinear elliptic equations on noncompact Riemannian manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 41–59
[12] M.\;T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721
[13] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of non-linear elliptic equations”, Comm. pure Appl. Math., 34:4 (1981), 525–598
[14] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249
[15] A.\;G. Losev, E.\;A. Mazepa, V.\;Y. Chebanenko, “Unbounded solutions of the stationary Schrödinger equation on Riemannian manifolds”, CMFT, 3:2 (2003), 443–451
[16] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta Math., 189:1 (2002), 79–142