Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_4_a2, author = {A. V. Loboda}, title = {On dimensions of affine transformation groups transitively acting}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {11--35}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a2/} }
A. V. Loboda. On dimensions of affine transformation groups transitively acting. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 11-35. http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a2/
[1] V.\;K. Beloshapka, “On symmetries of real hypersurfaces of three-dimensional complex space”, Mathematical Notes, 78:2 (2005), 171–179
[2] R. Bishop, R. Krittenden, Geometry of manifolds, Mir Publ., M., 1963, 364 pp.
[3] M.\;S. Danilov, A.\;V. Loboda, “On affine homogeneity of indefinite real hypersurfaces of space ${\mathbb{C}}^3$”, Mathematical Notes, 88:6 (2010), 866–883
[4] V.\;V. Ezhov, A.\;V. Loboda, G. Shmalts, “Canonical form of a 4-th order polynomial in normal equation of a real hypersurface in ${\mathbb{C}}^3$”, Mathematical Notes, 66:4 (1999), 624–626
[5] A.\;V. Loboda, “Affinely homogeneous real hypersurfaces of 3-dimensional complex space”, Geometric analysis and its applications, Proceedings of the II International Conference (Volgograd, 26–30 May 2014), 2014, 95–97
[6] A.\;V. Loboda, “Each holomorphically homogeneous tube in ${\mathbb{C}}^2$ has an affinely homogeneous base”, Siberian Mathematical Journal, 42:6 (2001), 1335–1339
[7] A.\;V. Loboda, Zh.\;A. Bugaeva, A.\;S. Khodarev, “On linear homogeneity of rigid real hypersurfaces of 3-dimensional complex space”, Proceedings of the International School-Seminar to the 90 years of N.V. Efimov (Abrau-Dyurso, 5–11 September 2000), 2000, 131–133
[8] A.\;V. Loboda, “On some invariants of tubular hypersurfaces in ${\mathbb{C}}^2$”, Mathematical Notes, 59:2 (1996), 211–223
[9] A.\;V. Loboda, “On dimension of a group transitively acting on a hypersurface in ${\mathbb{C}}^3$”, Functional Analysis and Its Applications, 33:1 (1999), 68–71
[10] A.\;V. Loboda, T.\;T.Ż. Nguen, “On affine homogeneity of a surfaces of tubular type in ${\mathbb{C}}^3$”, Analytic and Geometric Issues of Complex Analysis, Procedeengs of the Steklov Institute of Mathematics, 279, 2012, 93–110
[11] A.\;V. Loboda, A.\;S. Khodarev, “On a family of affinely homogeneous real hypersurfaces of 3-dimensional complex space”, Russian Mathematics, 2003, no. 10 (497), 38–50
[12] A.\;V. Loboda, “Homogeneous strictly pseudo convex hypersurfaces in ${\mathbb{C}}^3$ with two-dimensional isotropy groups”, Sbornik: Mathematics, 192:12 (2001), 3–24
[13] T.\;T.Ż. Nguen, “Affine homogeneous real hypersurfaces of tubular type in ${\mathbb{C}}^3$”, Mathematical Notes, 94:2 (2013), 246–265
[14] A.\;V. Atanov, A.\;V. Loboda, A.\;V. Shipovskaya, Affine homogeneous strictly pseudoconvex hypersurfaces of the type $(1/2, 0)$ in ${\mathbb{C}}^3$, 33 pp., arXiv: 1401.2252 [math.CV]
[15] V.\;K. Beloshapka, I.\;G. Kossovskij, “Classification of homogeneous CR-manifolds in dimension $4$”, J. Math. Anal. Appl., 374:2 (2011), 655–672
[16] V.\;K. Beloshapka, I.\;G. Kossovskij, “Homogeneous hypersurfaces in ${\mathbb{C}}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564
[17] E. Cartan, “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl., 11:4 (1932), 17–90
[18] S.\;S. Chern, J.\;K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133:4 (1974), 219–271
[19] M. Eastwood, V.\;V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77:1 (1999), 11–69
[20] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension $5$”, Acta Math., 201:1 (2008), 1–82
[21] A.\;V. Isaev, “On Chern–Moser normal forms of strongly pseudoconvex hypersurfaces with high-dimensional stability group”, Pacific J. Math., 235:2 (2008), 235–244
[22] A.\;V. Isaev, “On the number of affine equivalence classes of spherical tube hypersurfaces”, Math. Ann., 349:1 (2011), 59–74
[23] M. Kolar, “Normal forms for hypersurfaces of finite type in ${\mathbb{C}}^2$”, Math. Res. Lett., 12:6 (2005), 897–910
[24] B. Lamel, N. Mir, “Finite jet determination of CR mappings”, Advances in Mathematics, 216:1 (2007), 153–177
[25] N.\;K. Stanton, “A normal form for rigid hypersurfaces in ${\mathbb{C}}^2$”, Amer. J. Math., 113:5 (1991), 877–910