On the genus of the curve corresponding to the subcode of low weight of a rational Goppa code
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 6-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the main ways to provide correctness of information transmission via communication channels is the use of error-correcting codes. Construction of certain classes of codes is based on the curves with sufficient number of rational points. In this paper we study abelian curves. According to algorithm of construction, first of all, it is necessary to represent subcode of low weight as a trace code. Let $C_L (D,aP_\infty)$ be a rational Goppa code over $F_p$ with parameters $[n, k]$ and let $D_r$ denote the r-dimensional subcode of this code such that $\left| {\chi (D_r )} \right| = d_r (C_L (D,aP_\infty ))$. We need to represent subcode of low weight as follows $Tr_{Con(D)} (U) = \left\{ {Tr_{Con(D)} (R)\left| {R \in U} \right.} \right\} = D_r $, where $U$ is $r$-dimensional $F_p$-vector space and $Tr$ is trace map $Tr:F_{p^m } \to F_p $. Let $E_U$ be the function field of curve $C_{D_r}$, corresponding to the subcode of low weight $D_r$. So, the curve over field $F_{p^m} $ corresponds to the subcode of low weight. The genus of this curve is $g(C_{D_r } ) = \sum\limits_{i = 1}^t {g(E_i )}$, $ t=\frac{p^r-1}{p-1}$,
Keywords: geometric Goppa code, generalized Hemming weight of the code, subcode of low weight, algebraic curve, genus of an algebraic curve.
@article{VVGUM_2014_4_a1,
     author = {Yu. S. Kasatkina and A. S. Kasatkina},
     title = {On the genus of the curve corresponding to the subcode of low weight of a rational {Goppa} code},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--10},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a1/}
}
TY  - JOUR
AU  - Yu. S. Kasatkina
AU  - A. S. Kasatkina
TI  - On the genus of the curve corresponding to the subcode of low weight of a rational Goppa code
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 6
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a1/
LA  - ru
ID  - VVGUM_2014_4_a1
ER  - 
%0 Journal Article
%A Yu. S. Kasatkina
%A A. S. Kasatkina
%T On the genus of the curve corresponding to the subcode of low weight of a rational Goppa code
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 6-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a1/
%G ru
%F VVGUM_2014_4_a1
Yu. S. Kasatkina; A. S. Kasatkina. On the genus of the curve corresponding to the subcode of low weight of a rational Goppa code. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2014), pp. 6-10. http://geodesic.mathdoc.fr/item/VVGUM_2014_4_a1/

[1] Yu.\;S. Kasatkina, “On constraction of elementary abelian curves”, Vestnik Rossiyskogo gosudarstvennogo universiteta im. I. Kanta. Seriya «Fiziko-matematicheskie nauki», 2006, no. 10, 109–112

[2] A. Garcia, H. Stichtenoth, “Elementary Abelian p-Extensions of Algebraic Function Fields”, Manuscripta math., 72 (1991), 67–79

[3] H. Stichtenoth, V. Voss, “Generalized Hemming Weights of Trace Codes”, IEEE Trans. Inform., 40:2 (1994), 554–558