A question of Ahlfors
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1963, Ahlfors posed in [1] (and repeated in his book [2]) the following question which gave rise to various investigations of quasiconformal extendibility of univalent functions. Question. Let $f$ be a conformal map of the disk (or half-plane) onto a domain with quasiconformal boundary (quasicircle). How can this map be characterized? He conjectured that the characterization should be in analytic properties of the logarithmic derivative $\log f^\prime = f^{\prime\prime}/f^\prime$, and indeed, many results on quasiconformal extensions of holomorphic maps have been established using $f^{\prime\prime}/f^\prime$ and other invariants (see, e.g., the survey [9] and the references there). This question relates to another still not solved problem in geometric complex analysis: To what extent does the Riemann mapping function $f$ of a Jordan domain $D \subset \hat {\Bbb C}$ determine the geometric and conformal invariants (characteristics) of complementary domain $D^* = \hat {\Bbb C} \setminus \overline{D}$? The purpose of this paper is to provide a qualitative answer to these questions, which discovers how the inner features of biholomorphy determine the admissible bounds for quasiconformal dilatations and determine the Kobayashi distance for the corresponding points in the universal Teichmüller space.
Keywords: the Grunsky inequalities, universal Teichmüller space, Teichmüller metric, Kobayashi metric, Schwarzian derivative, Fredholm eigenvalues.
Mots-clés : Beltrami coefficient
@article{VVGUM_2014_3_a7,
     author = {Samuel L. Krushkal},
     title = {A question of {Ahlfors}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {61--65},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/}
}
TY  - JOUR
AU  - Samuel L. Krushkal
TI  - A question of Ahlfors
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 61
EP  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/
LA  - en
ID  - VVGUM_2014_3_a7
ER  - 
%0 Journal Article
%A Samuel L. Krushkal
%T A question of Ahlfors
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 61-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/
%G en
%F VVGUM_2014_3_a7
Samuel L. Krushkal. A question of Ahlfors. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 61-65. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/

[1] L. Ahlfors, “Remarks on the Neumann–Poincare integral equation”, Pacific J. Math., 2:3 (1952), 271–280

[2] L.\;V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966, 162 pp.

[3] C.\;J. Earle, I. Kra, S.\;L. Krushkal, “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc., 343:2 (1994), 927–948

[4] F.\;P. Gardiner, N. Lakic, Quasiconformal Teichmueller Theory, Amer. Math. Soc., Providence, 2000, 372 pp.

[5] H. Grunsky, “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen”, Math. Z., 45 (1939), 29–61

[6] S.\;L. Krushkal, “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings”, Comment. Math. Helv., 64 (1989), 650–660

[7] S.\;L. Krushkal, “Quasiconformal extensions and reflections”, Ch. 11, Handbook of Complex Analysis: Geometric Function Theory, v. II, Elsevier Science, Amsterdam, 2005, 507–553

[8] S.\;L. Krushkal, “Strengthened Moser's conjecture, geometry of Grunsky inequalities and Fredholm eigenvalues”, Central European J. Math., 5:3 (2007), 551–580

[9] S.\;L. Krushkal, “Generalized Grunsky coefficient inequalities and quasiconformal deformations”, Uzbek Math. J., 2014, no. 1 (to appear)

[10] S.\;L. Krushkal, “Ahlfors' question and beyond”, Annals Univ. Bucharest, 4 (LXIII):1 (2014) (to appear)

[11] S.\;L. Krushkal, R. Kühnau, Quasikonforme Abbildungen — neue Methoden und Anwendungen, Teubner, Leipzig, 1983, 172 pp.

[12] R. Kühnau, “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen”, Math. Nachr., 48 (1971), 77–105

[13] R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 7 (1982), 383–391

[14] R. Kühnau, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für $Q$-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv., 61 (1986), 290–307

[15] R. Kühnau, “Möglichst konforme Spiegelung an einer Jordankurve”, Jber. Deutsch. Math. Verein., 90 (1988), 90–109

[16] O. Lehto, “An extension theorem for quasiconformal mappings”, Proc. London Math. Soc., s3-14A:1 (1965), 187–190

[17] C. Pommerenke, Univalent Functions, Vandenhoeck Ruprecht, Göttingen, 1975, 374 pp.

[18] M. Schiffer, “Fredholm eigenvalues and Grunsky matrices”, Ann. Polon. Math., 39 (1981), 149–164