Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_3_a7, author = {Samuel L. Krushkal}, title = {A question of {Ahlfors}}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {61--65}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/} }
Samuel L. Krushkal. A question of Ahlfors. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 61-65. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a7/
[1] L. Ahlfors, “Remarks on the Neumann–Poincare integral equation”, Pacific J. Math., 2:3 (1952), 271–280
[2] L.\;V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966, 162 pp.
[3] C.\;J. Earle, I. Kra, S.\;L. Krushkal, “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc., 343:2 (1994), 927–948
[4] F.\;P. Gardiner, N. Lakic, Quasiconformal Teichmueller Theory, Amer. Math. Soc., Providence, 2000, 372 pp.
[5] H. Grunsky, “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen”, Math. Z., 45 (1939), 29–61
[6] S.\;L. Krushkal, “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings”, Comment. Math. Helv., 64 (1989), 650–660
[7] S.\;L. Krushkal, “Quasiconformal extensions and reflections”, Ch. 11, Handbook of Complex Analysis: Geometric Function Theory, v. II, Elsevier Science, Amsterdam, 2005, 507–553
[8] S.\;L. Krushkal, “Strengthened Moser's conjecture, geometry of Grunsky inequalities and Fredholm eigenvalues”, Central European J. Math., 5:3 (2007), 551–580
[9] S.\;L. Krushkal, “Generalized Grunsky coefficient inequalities and quasiconformal deformations”, Uzbek Math. J., 2014, no. 1 (to appear)
[10] S.\;L. Krushkal, “Ahlfors' question and beyond”, Annals Univ. Bucharest, 4 (LXIII):1 (2014) (to appear)
[11] S.\;L. Krushkal, R. Kühnau, Quasikonforme Abbildungen — neue Methoden und Anwendungen, Teubner, Leipzig, 1983, 172 pp.
[12] R. Kühnau, “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen”, Math. Nachr., 48 (1971), 77–105
[13] R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 7 (1982), 383–391
[14] R. Kühnau, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für $Q$-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv., 61 (1986), 290–307
[15] R. Kühnau, “Möglichst konforme Spiegelung an einer Jordankurve”, Jber. Deutsch. Math. Verein., 90 (1988), 90–109
[16] O. Lehto, “An extension theorem for quasiconformal mappings”, Proc. London Math. Soc., s3-14A:1 (1965), 187–190
[17] C. Pommerenke, Univalent Functions, Vandenhoeck Ruprecht, Göttingen, 1975, 374 pp.
[18] M. Schiffer, “Fredholm eigenvalues and Grunsky matrices”, Ann. Polon. Math., 39 (1981), 149–164