On equicontinuity of one family of space mappings with unbounded characteristic
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 41-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, some class of space mappings satisfying geometric estimates with respect to some outer measure, that is conformal modulus of families of curves, is studied. It is proved the equicontinuity of above classes in a closure of a domain provided that the majorant corresponding to a distortion of families of curves has a finite mean oscillation at every point, or satisfies some other conditions. Let $D$ be a domain in ${\Bbb R}^n,$ $n\ge 2,$ and $f:D\rightarrow {\Bbb R}^n$ be a continuous mapping. Set $\overline{{\Bbb R}^n}={\Bbb R}^n\cup\{\infty\},$ let $m$ be the Lebesgue measure in ${\Bbb R}^n,$ and $M$ be the conformal modulus of families of curves. Given a domain $D$ and two sets $E$ and $F$ in ${\overline{{\Bbb R}^n}},$ $n\ge 2,$ $\Gamma (E,F,D)$ denotes the family of all paths $\gamma:[a,b]\rightarrow {\overline{{\Bbb R}^n}}$ which join $E$ and $F$ in $D$, i.e., $\gamma(a)\in E,$ $\gamma(b)\in F$ and $\gamma(t)\in D$ for $a$ Denote by $S(x_0,r_1)$ and $S(x_0,r_2)$ the corresponding boundaries of the spherical ring $A(x_0,r_1,r_2) = \{ x\in{\Bbb R}^n : r_1|x-x_0|$ and let $S_i=S(x_0, r_i),$ $i=1,2.$ Given a (Lebesgue) measurable function $Q: D \rightarrow [0,\infty]$, a mapping $f:D\rightarrow {\Bbb R}^n$ is called ring $Q$–mapping at a point $x_0\in D$ if \begin{equation} M\left(f(\Gamma(S_1, S_2, A(x_0,r_1,r_2)))\right) \le \int\limits_{A(x_0,r_1,r_2)} Q(x)\cdot \eta^n(|x-x_0|)dm(x)\tag{1} \end{equation} for $0$ and for every Lebesgue measurable function $\eta: (r_1,r_2)\rightarrow [0,\infty ]$ such that $\int\limits_{r_1}^{r_2}\eta(r)dr\ge 1.$ By analogy, given a Lebesgue measurable function $Q:{\Bbb R}^n\rightarrow [0, \infty],$ $Q(x)\equiv 0$ for every $x\not\in D,$ we say that a mapping $f:D\rightarrow \overline{{\Bbb R}^n}$ is a ring $Q$-mapping at $x_0\in \overline{D},$ $x_0\ne \infty,$ if for every $r_0=r(x_0)$ and $A=A(r_1,r_2,x_0)$ the relation (1) holds for every continua $E_1\subset \overline{B(x_0, r_1)}\cap D$ and $E_2\subset \left(\overline{{\Bbb R}^n}\setminus B(x_0, r_2)\right)\cap D.$ Note that analytic functions ($n=2$) are ring $Q$-mappings with $Q\equiv 1,$ ant that the so-called mappings with bounded distortion are ring $Q$-mappings with $Q\le K=const.$ We say that a function $\varphi:D\rightarrow {\Bbb R} $ has finite mean oscillation at a point $x_0 \in {D} $ if $\limsup\limits_{\varepsilon\rightarrow 0}\frac{1}{\Omega_n\cdot \varepsilon^n} \int\limits_{B(x_0, \,\varepsilon)} |\varphi(x)-\widetilde{\varphi_{\varepsilon}}|\,dm(x) \infty$ where $\widetilde{\varphi_{\varepsilon}}= \frac{1}{\Omega_n\cdot \varepsilon^n}\int\limits_{B( x_0, \,\varepsilon)} \varphi(x)\, dm(x)\,.$ We say that a boundary $\partial D$ of $D$ is strongly accessible at $x_0\in \partial D$ if, for every neighborhood $U$ of $x_0$ there exists a compactum $E\subset D,$ a neighborhood $V\subset U$ of $x_0$ and a number $\delta >0$ such that $M(\Gamma(E,F, D))\ge \delta$ for every continua $F$ in $D,$ $F\cap\partial U\ne\varnothing\ne F\cap\partial V.$ It is known that, in particular, all convex bounded domains have strongly accessible boundaries. Given domains $D,$ $D^{\,\prime}\subset {\Bbb R}^n,$ $z_1, z_2\in D,$ $z_1\ne z_2,$ $z_1^{\prime},$ $z_2^{\prime}\in D^{\prime}$ and Lebesgue measurable function $Q(x): {\Bbb R}^n\rightarrow [0, \infty]$ obeying $Q(x)\equiv 0$ for $x\not\in D,$ denote $\frak{R}_{z_1, z_2, z_1^{\,\prime}, z_2^{\,\prime}, Q}(D, D^{\,\prime})$ a family of all ring $Q$-homeomorphisms $f:D\rightarrow D^{\,\prime}$ satisfying to (1) in $\overline{D},$ $f(D)=D^{\,\prime},$ such that $f(z_1)=z_1^{\prime},\quad f(z_2)=z_2^{\prime}\,.$ Given a Lebesgue measurable function $Q\colon{\Bbb R}^n\rightarrow[0, \infty]$ and $x_0\in{\Bbb R}^n,$ $q_{x_0}(r)$ is integral mean value of $Q$ under sphere $S(x_0, r).$ Denote $q_{x_0}^*(r)$ a mean integral value of $ Q^*(x)=\begin{cases} Q(x), Q(x)\ge 1,\\ 1, Q(x)1 \end{cases} $ under the sphere $S(x_0, r).$ Now we have the following. Theorem. Let a domain $D$ be locally connected at all boundary points, $\partial D^{\,\prime}$ is strongly accessible, and $Q(x)$ satisfies for every $x_0\in\overline D$ at least one of the following conditions: 1) $Q(x)\in FMO(x_0)$; 2) $q_{x_0}(r)=O([\log\frac{1}{r}]^{n-1})$ at $r\rightarrow 0$; 3) for some $\delta(x_0)>0,$ $\int\limits_{0}^{\delta(x_0)}\frac{dt}{t{q_{x_0}^*}^{1/(n-1)}(t)}=\infty. $ Then every $f\in \frak{R}_{z_1, z_2, z_1^{\,\prime}, z_2^{\,\prime}, Q}(D, D^{\,\prime})$ has a continuous extension $\overline f\colon\overline D\rightarrow\overline {D^{\,\prime}}$, moreover, a family $\overline{\frak{R}_{z_1, z_2, z_1^{\,\prime}, z_2^{\,\prime}, Q}(D, D^{\,\prime})}$ which consists of all extended mappings mentioned above, is equicontinuous (normal) in $\overline D$.
Keywords: mappings with bounded and finite distortion, boundary behavior of space mappings, equicontinuity, continued extension to a boundary.
@article{VVGUM_2014_3_a5,
     author = {E. A. Sevostyanov and D. S. Dolya},
     title = {On equicontinuity of one family of space mappings with unbounded characteristic},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {41--55},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/}
}
TY  - JOUR
AU  - E. A. Sevostyanov
AU  - D. S. Dolya
TI  - On equicontinuity of one family of space mappings with unbounded characteristic
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 41
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/
LA  - ru
ID  - VVGUM_2014_3_a5
ER  - 
%0 Journal Article
%A E. A. Sevostyanov
%A D. S. Dolya
%T On equicontinuity of one family of space mappings with unbounded characteristic
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 41-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/
%G ru
%F VVGUM_2014_3_a5
E. A. Sevostyanov; D. S. Dolya. On equicontinuity of one family of space mappings with unbounded characteristic. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 41-55. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/

[1] A. Ignatyev, V. Ryazanov, “Finite Mean Oscillation in the Mapping Theory”, Ukr. Math. Bull., 2:3 (2005), 395–417

[2] D. Kovtonyuk, R. Salimov, E. Sevostyanov, To the Theory of Mappings of Orlicz and Orlicz – Sobolev Classes, Naukova dumka Publ., Kiev, 2013, 303 pp.

[3] K. Kuratowski, Topology, Mir Publ., M., 1969, 624 pp.

[4] V.\;G. Mazya, Sobolev Spaces, Izd-vo Leningr. un-ta, L., 1985, 416 pp.

[5] V.\;M. Miklyukov, Conformal Maps of Nonsmooth Surfaces and Their Applications, Izd-vo VolGU, Volgograd, 2005, 273 pp.

[6] E.\;A. Poletskiy, “The Modulus Method for Nonhomeomorphic Quasiconformal Mappings”, Sbornik: Mathematics, 83:2 (1970), 261–272

[7] Yu.\;G. Reshetnyak, Space Mappings with Bounded Distortion, Nauka Publ., Novosibirsk, 1982, 285 pp.

[8] E.\;A. Sevostyanov, “On the Equicontinuity of Homeomorphisms with an Unbounded Characteristic”, Siberian Advances in Mathematics, 15:1 (2012), 178–204

[9] E. S. Smolovaya, “Boundary Behavior of Ring $Q$-Homeomorphisms in Metric Spaces”, Ukrainian Mathematical Journal, 62:5 (2010), 682–689

[10] A.\;V. Sychev, “Spatial Quasiconformal Mappings Continuous by Hölder at Boundary Points”, Siberian Mathematical Journal, 11:1 (1970), 183–192

[11] C. Andreian Cazacu, “On the length-area dilatation”, Complex Var. Theory Appl., 50:7-11 (2005), 765–776

[12] C.\;J. Bishop, V.\;Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. Journ. Math. and Math. Scie., 2003:22 (2003), 1397–1420

[13] M. Cristea, “Mappings of finite distortion: Zoric's theorem, and equicontinuity results”, Rev. Roumaine Math. Pures Appl., 52:5 (2007), 539–554

[14] M. Cristea, “Local homeomorphisms having local ${ACL}^n$ inverses”, Compl. Var. and Ellipt. Equat., 53:1 (2008), 77–99

[15] T. Iwaniec, G. Martin, Geometrical function theory and non-linear analysis, Clarendon Press, Oxford, 2001, 552 pp.

[16] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426

[17] R. Näkki, “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A., 484 (1970), 1–50

[18] R. Näkki, B. Palka, “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433

[19] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Science + Business Media LLC, New York, 2009, 367 pp.

[20] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “Mappings with finite length distortion”, J. d'Anal. Math., 93:1 (2004), 215–236

[21] V.\;I. Ryazanov, R.\;R. Salimov, E.\;A. Sevostyanov, “On convergence analysis of space homeomorphisms”, Siberian Advances in Mathematics, 23:4 (2013), 263–293

[22] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math, 229, 1971, 144 pp.