Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_3_a5, author = {E. A. Sevostyanov and D. S. Dolya}, title = {On equicontinuity of one family of space mappings with unbounded characteristic}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {41--55}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/} }
TY - JOUR AU - E. A. Sevostyanov AU - D. S. Dolya TI - On equicontinuity of one family of space mappings with unbounded characteristic JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 41 EP - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/ LA - ru ID - VVGUM_2014_3_a5 ER -
%0 Journal Article %A E. A. Sevostyanov %A D. S. Dolya %T On equicontinuity of one family of space mappings with unbounded characteristic %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2014 %P 41-55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/ %G ru %F VVGUM_2014_3_a5
E. A. Sevostyanov; D. S. Dolya. On equicontinuity of one family of space mappings with unbounded characteristic. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 41-55. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a5/
[1] A. Ignatyev, V. Ryazanov, “Finite Mean Oscillation in the Mapping Theory”, Ukr. Math. Bull., 2:3 (2005), 395–417
[2] D. Kovtonyuk, R. Salimov, E. Sevostyanov, To the Theory of Mappings of Orlicz and Orlicz – Sobolev Classes, Naukova dumka Publ., Kiev, 2013, 303 pp.
[3] K. Kuratowski, Topology, Mir Publ., M., 1969, 624 pp.
[4] V.\;G. Mazya, Sobolev Spaces, Izd-vo Leningr. un-ta, L., 1985, 416 pp.
[5] V.\;M. Miklyukov, Conformal Maps of Nonsmooth Surfaces and Their Applications, Izd-vo VolGU, Volgograd, 2005, 273 pp.
[6] E.\;A. Poletskiy, “The Modulus Method for Nonhomeomorphic Quasiconformal Mappings”, Sbornik: Mathematics, 83:2 (1970), 261–272
[7] Yu.\;G. Reshetnyak, Space Mappings with Bounded Distortion, Nauka Publ., Novosibirsk, 1982, 285 pp.
[8] E.\;A. Sevostyanov, “On the Equicontinuity of Homeomorphisms with an Unbounded Characteristic”, Siberian Advances in Mathematics, 15:1 (2012), 178–204
[9] E. S. Smolovaya, “Boundary Behavior of Ring $Q$-Homeomorphisms in Metric Spaces”, Ukrainian Mathematical Journal, 62:5 (2010), 682–689
[10] A.\;V. Sychev, “Spatial Quasiconformal Mappings Continuous by Hölder at Boundary Points”, Siberian Mathematical Journal, 11:1 (1970), 183–192
[11] C. Andreian Cazacu, “On the length-area dilatation”, Complex Var. Theory Appl., 50:7-11 (2005), 765–776
[12] C.\;J. Bishop, V.\;Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. Journ. Math. and Math. Scie., 2003:22 (2003), 1397–1420
[13] M. Cristea, “Mappings of finite distortion: Zoric's theorem, and equicontinuity results”, Rev. Roumaine Math. Pures Appl., 52:5 (2007), 539–554
[14] M. Cristea, “Local homeomorphisms having local ${ACL}^n$ inverses”, Compl. Var. and Ellipt. Equat., 53:1 (2008), 77–99
[15] T. Iwaniec, G. Martin, Geometrical function theory and non-linear analysis, Clarendon Press, Oxford, 2001, 552 pp.
[16] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426
[17] R. Näkki, “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A., 484 (1970), 1–50
[18] R. Näkki, B. Palka, “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433
[19] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Science + Business Media LLC, New York, 2009, 367 pp.
[20] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “Mappings with finite length distortion”, J. d'Anal. Math., 93:1 (2004), 215–236
[21] V.\;I. Ryazanov, R.\;R. Salimov, E.\;A. Sevostyanov, “On convergence analysis of space homeomorphisms”, Siberian Advances in Mathematics, 23:4 (2013), 263–293
[22] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math, 229, 1971, 144 pp.