On history of relative distance in plane domain
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider history of relative distance in plane domain and its applications. Definitions of relative distance in works S. Mazurkevich, M. Lavrentiev, G. Suvorov and V. Miklukov are explained and compared with its role in geometric theory of functions. The definitions of relative distance are discussed in this paper. Relative distance is defined by Marzinkevich (1916) as diameter of set connected at two points. This distance cannot be considered as prime ends distance. Lavrentiev's distance (1936) is defined as minimum of two figures length of curves connected at two points and length of cuts separating two points from fixed point. This variant of distance completes domain with prime ends but does not meets triangle inequality. Definitions given by Suvorov (1956) and recently by Miklyukov (2004) meet all conditions. Example of plain domain where triangle inequality for Lavrentiev's distance fails are presented in this paper.
Keywords: relative distance, prime ends, boundary correspondence, triangle inequality.
Mots-clés : compactification
@article{VVGUM_2014_3_a4,
     author = {Yu. V. Pomelnikov},
     title = {On history of relative distance in plane domain},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {34--40},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a4/}
}
TY  - JOUR
AU  - Yu. V. Pomelnikov
TI  - On history of relative distance in plane domain
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 34
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a4/
LA  - ru
ID  - VVGUM_2014_3_a4
ER  - 
%0 Journal Article
%A Yu. V. Pomelnikov
%T On history of relative distance in plane domain
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 34-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a4/
%G ru
%F VVGUM_2014_3_a4
Yu. V. Pomelnikov. On history of relative distance in plane domain. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 34-40. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a4/

[1] K. Kuratowski, Topology, In 2 vols., v. 2, Mir Publ., M., 1969, 512 pp.

[2] M.\;A. Lavrentiev, “On Continuity Univalent Functions in Closed Domain”, Doklady Mathematics, 4:5 (1936), 207–209

[3] V.\;M. Miklyukov, “Relative Distance by M.A. Lavrentiev and Prime Ends on Nonparametric Surfaces”, Siberia Mathematical Journal, 1:3 (2004), 349–372

[4] Yu.\;V. Pomelnikov, G.\;D. Suvorov, “New Family of Conformally Invariant Compactifications of Plane Domain”, Siberian Mathematical Journal, XXI:3 (1980), 145–161

[5] G.\;D. Suvorov, “Remark on M.A. Lavrentiev’s Theorem”, Uchen. zap. Tom. gos. un-ta, 25, 1956, 3–8

[6] G.\;D. Suvorov, Metric Theory of Prime Ends and Boundary Properties of Plane Mappings with Finite Dirichlet Integral, Naukova dumka Publ., Kiev, 1981, 166 pp.

[7] S. Mazurkiewicz, “Sur une classification de points situes un sur continu arbitraire”, C. R. Soc. Sc. Lett., 9:5 (1916), 428–442

[8] S. Mazurkiewicz, “Ueber die Definition der Primenden”, Fund. Math., 26 (1936), 272–279

[9] O. Martio, V.\;M. Miklyukov, V. Vuorinen, “Relative distance and boundary properties of nonparametric surfaces with finite area”, J. Math. Anal. Appl., 286:2 (2003), 524–539