A remark on the canonical distribution
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is а well-known fact that if we take the $n$-dimensional ball of unit volume and project it orthogonally onto a straight line, observing how the measure is distributed on the projection, then in the limit as $n \to \infty$ we get the normal distribution on the line. It is also well known that almost the entire volume of the multidimensional domain, for example, of the multidimensional ball, is concentrated in the neighborhood of the boundary. These phenomena have numerous manifestations and consequences. For example, any more or less regular function on the multidimensional ball or on the multidimensional sphere is practically constant from the point of view of the observer who takes two random points of the domain of the function and compares the values of the function at these points. Classical Maxwell and Gibbs distributions of thermodynamics are discussed here in the context of multidimensional geometry.
Keywords: multidimensional geometry, functions of a very large number of variables, Maxwell distribution, Gibbs distribution.
@article{VVGUM_2014_3_a3,
     author = {V. A. Zorich},
     title = {A remark on the canonical distribution},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {23--33},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a3/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - A remark on the canonical distribution
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 23
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a3/
LA  - ru
ID  - VVGUM_2014_3_a3
ER  - 
%0 Journal Article
%A V. A. Zorich
%T A remark on the canonical distribution
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 23-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a3/
%G ru
%F VVGUM_2014_3_a3
V. A. Zorich. A remark on the canonical distribution. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 23-33. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a3/

[1] F.\;A. Berezin, Lectures on Statistical Physics, RKhD Publ., M.–Izhevsk, 2002, 192 pp.

[2] V.\;A. Zorich, Mathematical Analysis of Problems in the Natural Sciences, MTsNMO Publ., M., 2008, 135 pp.

[3] V. V. Kozlov, Thermal Equilibrium in the Theories by Gibbs and Poincare, RKhD Publ., M.–Izhevsk, 2002, 319 pp.

[4] G.\;A. Lorentz, Statistical Theories in Thermodynamics, RKhD Publ., M.–Izhevsk, 2001, 192 pp.

[5] Yu.\;I. Manin, Mathematics as a Metaphor, MTsNMO Publ., M., 2008, 411 pp.

[6] R.\;A. Minlos, Introduction to Mathematical Statistical Physics, MTsNMO Publ., M., 2002, 111 pp.

[7] V.\;I. Opoitsev, “Nonlinear Law of Large Numbers”, Automation and Remote Control, 1994, no. 4, 65–75

[8] A.\;Ya. Khinchin, “Symmetric Functions on Multidimensional Surfaces”, Collection of Papers in Memory of Academician A.A. Andronov, Izd-vo AN SSSR Publ., M., 1955, 541–576

[9] E. Schrödinger, Lectures on Physics, RKhD Publ., M.–Izhevsk, 2001, 160 pp.

[10] K. Ball, “An Elementary Introduction to Modern Convex Geometry”, Flavors of Geometry, MSRI Publications, 31, 1997, 1–58

[11] V. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, 1200, Springer, 1986, 160 pp.