Harmonic functions on cones of model manifolds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with harmonic functions on cones of model manifolds. $M$ is called a cone of model manifold, if $M=B\cup D$, where $B$ is a non-empty precompact set and $D$ is isometric to the product $[r_0,+\infty)\times \Omega$ ($r_0>0$, $\Omega$ is a compact Riemannian manifold with non-empty smooth boundary) with the metric $$ds^2=dr^2+g^2(r)d\theta^2.$$ Here $g(r)$ is a positive smooth on $[r_0,+\infty)$ function, and $d\theta$ is a metric on $\Omega$. Note if $\Omega$ is a compact Riemannian manifold with no boundary, we have just a definition of model manifold. Let's $$H_0(M)=\{u: \Delta u=0, u|_{\partial M}=0\},$$ and $$J=\int_{r_0}^\infty g^{1-n}(t)\left(\int_{r_0}^t g^{n-3}(\xi)d\xi\right)dt,$$ where $r_0={\rm const}>0,\ n=\dim M$. The main results of the paper are following. Theorem 1. Let's manifold $M$ has $J=\infty$. Then any bounded function $u\in H_0(M)$ is equal to zero identically. Theorem 2. Let's manifold $M$ has $J=\infty$. Then for cone of positive harmonic functions from class $H_0(M)$ the dimension is equal to 1.
Keywords: Laplace–Beltrami equation, Liouville type theorems, model Riemannian manifolds, cones of model manifolds
Mots-clés : dimension of solutions' space.
@article{VVGUM_2014_3_a2,
     author = {Yu. V. Goncharov and A. G. Losev and A. V. Svetlov},
     title = {Harmonic functions on cones of model manifolds},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--22},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/}
}
TY  - JOUR
AU  - Yu. V. Goncharov
AU  - A. G. Losev
AU  - A. V. Svetlov
TI  - Harmonic functions on cones of model manifolds
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 13
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/
LA  - ru
ID  - VVGUM_2014_3_a2
ER  - 
%0 Journal Article
%A Yu. V. Goncharov
%A A. G. Losev
%A A. V. Svetlov
%T Harmonic functions on cones of model manifolds
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 13-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/
%G ru
%F VVGUM_2014_3_a2
Yu. V. Goncharov; A. G. Losev; A. V. Svetlov. Harmonic functions on cones of model manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 13-22. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/