Harmonic functions on cones of model manifolds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with harmonic functions on cones of model manifolds. $M$ is called a cone of model manifold, if $M=B\cup D$, where $B$ is a non-empty precompact set and $D$ is isometric to the product $[r_0,+\infty)\times \Omega$ ($r_0>0$, $\Omega$ is a compact Riemannian manifold with non-empty smooth boundary) with the metric $$ds^2=dr^2+g^2(r)d\theta^2.$$ Here $g(r)$ is a positive smooth on $[r_0,+\infty)$ function, and $d\theta$ is a metric on $\Omega$. Note if $\Omega$ is a compact Riemannian manifold with no boundary, we have just a definition of model manifold. Let's $$H_0(M)=\{u: \Delta u=0, u|_{\partial M}=0\},$$ and $$J=\int_{r_0}^\infty g^{1-n}(t)\left(\int_{r_0}^t g^{n-3}(\xi)d\xi\right)dt,$$ where $r_0={\rm const}>0,\ n=\dim M$. The main results of the paper are following. Theorem 1. Let's manifold $M$ has $J=\infty$. Then any bounded function $u\in H_0(M)$ is equal to zero identically. Theorem 2. Let's manifold $M$ has $J=\infty$. Then for cone of positive harmonic functions from class $H_0(M)$ the dimension is equal to 1.
Keywords: Laplace–Beltrami equation, Liouville type theorems, model Riemannian manifolds, cones of model manifolds
Mots-clés : dimension of solutions' space.
@article{VVGUM_2014_3_a2,
     author = {Yu. V. Goncharov and A. G. Losev and A. V. Svetlov},
     title = {Harmonic functions on cones of model manifolds},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--22},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/}
}
TY  - JOUR
AU  - Yu. V. Goncharov
AU  - A. G. Losev
AU  - A. V. Svetlov
TI  - Harmonic functions on cones of model manifolds
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 13
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/
LA  - ru
ID  - VVGUM_2014_3_a2
ER  - 
%0 Journal Article
%A Yu. V. Goncharov
%A A. G. Losev
%A A. V. Svetlov
%T Harmonic functions on cones of model manifolds
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 13-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/
%G ru
%F VVGUM_2014_3_a2
Yu. V. Goncharov; A. G. Losev; A. V. Svetlov. Harmonic functions on cones of model manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 13-22. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/

[1] A.\;A. Grigoryan, “On Existence of Positive Solutions for Laplace Equations on Riemannian Manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363

[2] S.\;A. Korolkov, “Harmonic Functions on Riemannian Manifolds with Ends”, Siberian Mathematical Journal, 49:6 (2008), 1319–1332

[3] E.\;S. Korolkova, S.\;A. Korolkov, “Boundary problems for harmonic functions on unbounded open sets of Riemannian manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 1 (18), 45–58

[4] S.\;A. Korolkov, A.\;G. Losev, “Solutions for Elliptic Equations on Riemannian Manifolds with Ends”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 23–40

[5] S.\;A. Korolkov, A.\;G. Losev, E.\;A. Mazepa, “On Harmonic Functions on Riemannian Manifolds with Quasimodel Ends”, Vestnik Samarskogo gosudarstvennogo universiteta, 2008, no. 3 (62), 175–191

[6] S.\;A. Korolkov, A.\;V. Svetlov, “Boudary Problems for Stationary Schrödinger Equation on Unbounded Domain of Riemannian Manifolds”, Science and Education in the Present Competitive Environment, RIO ITsIPT Publ., Ufa, 2014, 215–221

[7] A.\;G. Losev, “Some Liouville Theorems on Riemannian Manifolds of Special Type”, Soviet Mathematics, 1991, no. 12, 15–24

[8] A.\;G. Losev, “On the Hyperbolicity Criterion for Noncompact Riemannian Manifolds of Special Type”, Mathematical Notes, 59:4 (1996), 558–564

[9] V.\;M. Miklyukov, “Some Parabolicity and Hyperbolicity Conditions for Boundary Sets of Surfaces”, Izvestiya: Mathematics, 60:4 (1996), 111–158

[10] M.\;T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721

[11] S.\;Y. Cheng, S.\;T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354

[12] A. Grigoryan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249

[13] D. Grieser, “Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary”, Commun. partial diff. eqns., 27:7-8 (2002), 1283–1299

[14] S.\;A. Korolkov, A.\;G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Mathematische zeitschrift, 272:1-2 (2012), 459–472

[15] A.\;G. Losev, “Elliptic partial differential equation on the warped products of Riemannian manifolds”, Applicable Analysis, 71:1-4 (1998), 325–339

[16] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18:4 (1983), 723–732

[17] S.\;T. Yau, “Nonlinear analysis in geometry”, L'Enseigenement Mathematique, 33 (1987), 109–158