Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_3_a2, author = {Yu. V. Goncharov and A. G. Losev and A. V. Svetlov}, title = {Harmonic functions on cones of model manifolds}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {13--22}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/} }
TY - JOUR AU - Yu. V. Goncharov AU - A. G. Losev AU - A. V. Svetlov TI - Harmonic functions on cones of model manifolds JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 13 EP - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/ LA - ru ID - VVGUM_2014_3_a2 ER -
Yu. V. Goncharov; A. G. Losev; A. V. Svetlov. Harmonic functions on cones of model manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 13-22. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a2/
[1] A.\;A. Grigoryan, “On Existence of Positive Solutions for Laplace Equations on Riemannian Manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363
[2] S.\;A. Korolkov, “Harmonic Functions on Riemannian Manifolds with Ends”, Siberian Mathematical Journal, 49:6 (2008), 1319–1332
[3] E.\;S. Korolkova, S.\;A. Korolkov, “Boundary problems for harmonic functions on unbounded open sets of Riemannian manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 1 (18), 45–58
[4] S.\;A. Korolkov, A.\;G. Losev, “Solutions for Elliptic Equations on Riemannian Manifolds with Ends”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 23–40
[5] S.\;A. Korolkov, A.\;G. Losev, E.\;A. Mazepa, “On Harmonic Functions on Riemannian Manifolds with Quasimodel Ends”, Vestnik Samarskogo gosudarstvennogo universiteta, 2008, no. 3 (62), 175–191
[6] S.\;A. Korolkov, A.\;V. Svetlov, “Boudary Problems for Stationary Schrödinger Equation on Unbounded Domain of Riemannian Manifolds”, Science and Education in the Present Competitive Environment, RIO ITsIPT Publ., Ufa, 2014, 215–221
[7] A.\;G. Losev, “Some Liouville Theorems on Riemannian Manifolds of Special Type”, Soviet Mathematics, 1991, no. 12, 15–24
[8] A.\;G. Losev, “On the Hyperbolicity Criterion for Noncompact Riemannian Manifolds of Special Type”, Mathematical Notes, 59:4 (1996), 558–564
[9] V.\;M. Miklyukov, “Some Parabolicity and Hyperbolicity Conditions for Boundary Sets of Surfaces”, Izvestiya: Mathematics, 60:4 (1996), 111–158
[10] M.\;T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721
[11] S.\;Y. Cheng, S.\;T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354
[12] A. Grigoryan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249
[13] D. Grieser, “Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary”, Commun. partial diff. eqns., 27:7-8 (2002), 1283–1299
[14] S.\;A. Korolkov, A.\;G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Mathematische zeitschrift, 272:1-2 (2012), 459–472
[15] A.\;G. Losev, “Elliptic partial differential equation on the warped products of Riemannian manifolds”, Applicable Analysis, 71:1-4 (1998), 325–339
[16] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18:4 (1983), 723–732
[17] S.\;T. Yau, “Nonlinear analysis in geometry”, L'Enseigenement Mathematique, 33 (1987), 109–158