Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_2_a3, author = {V. V. Popov}, title = {{\CYRO}n the congruence lattices of periodic unary algebras}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {27--30}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/} }
V. V. Popov. Оn the congruence lattices of periodic unary algebras. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 27-30. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/
[1] V.\;A. Artamonov, V.\;N. Saliy, L.\;A. Skornyakov, General Algebra, v. II, Nauka Publ., M., 1991, 480 pp.
[2] A.\;P. Boschenko, “Pseudocomplementation in the congruence lattice of a unary”, Algebraic systems, Volgograd, 1989, 23–26
[3] D.\;P Egorova, “Congruence structure of unary algebra”, Ordered sets and lattices, 5, Saratov, 1978, 11–44
[4] A.\;I. Maltsev, Algebraic systems, Nauka Publ., M., 1970, 392 pp.
[5] V.\;V. Popov, On collective normality, rotatable graphs, and congruences of unoids, LAP LAMBERT Academic Publishing, Saarbrücken, 2013, 64 pp.
[6] V.\;L. Usoltsev, Minimal unary algebras with two commuting operations, Deposit at All-Union Institute of Scientific and Technical Information, no. 3857-D96, 1996, 20 pp.
[7] J. Berman, “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38