Оn the congruence lattices of periodic unary algebras
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 27-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author describes all commutative unary algebras with finite number of unary operations which have distributive lattice of congruences and cyclic elements in every operation. It proves the following result: Theorem 2. Let ${\mathbf A}$=${\langle A, f_1, f_2, \ldots, f_m \rangle }$ is a connected commutative unary algebra, $m\geq 1$ and $n_1, n_2, \ldots,n_m\geq 1$ — such a natural numbers, that $f_i^{n_i}(x)=x$ for every $i\leq m$ and every $x\in A$. Then the following condition are equivalent: (1) The lattice of congruence on ${\mathbf A}$ has a distributive property. (2) One can find natural numbers $k_1, k_2, \ldots, k_m\geq 1$ and such an unary operation $h$ on ${\mathbf A}$, that for every $i=1, 2, \ldots, m$ and every $x\in A$ it holds $f_i(x)=h^{k_i}(x)$.
Keywords: unary operation, commutative unary algebra, lattice of congruence, distributive property
Mots-clés : cyclic element.
@article{VVGUM_2014_2_a3,
     author = {V. V. Popov},
     title = {{\CYRO}n the congruence lattices of periodic unary algebras},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {27--30},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/}
}
TY  - JOUR
AU  - V. V. Popov
TI  - Оn the congruence lattices of periodic unary algebras
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 27
EP  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/
LA  - ru
ID  - VVGUM_2014_2_a3
ER  - 
%0 Journal Article
%A V. V. Popov
%T Оn the congruence lattices of periodic unary algebras
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 27-30
%N 2
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/
%G ru
%F VVGUM_2014_2_a3
V. V. Popov. Оn the congruence lattices of periodic unary algebras. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 27-30. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/

[1] V.\;A. Artamonov, V.\;N. Saliy, L.\;A. Skornyakov, General Algebra, v. II, Nauka Publ., M., 1991, 480 pp.

[2] A.\;P. Boschenko, “Pseudocomplementation in the congruence lattice of a unary”, Algebraic systems, Volgograd, 1989, 23–26

[3] D.\;P Egorova, “Congruence structure of unary algebra”, Ordered sets and lattices, 5, Saratov, 1978, 11–44

[4] A.\;I. Maltsev, Algebraic systems, Nauka Publ., M., 1970, 392 pp.

[5] V.\;V. Popov, On collective normality, rotatable graphs, and congruences of unoids, LAP LAMBERT Academic Publishing, Saarbrücken, 2013, 64 pp.

[6] V.\;L. Usoltsev, Minimal unary algebras with two commuting operations, Deposit at All-Union Institute of Scientific and Technical Information, no. 3857-D96, 1996, 20 pp.

[7] J. Berman, “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38