Оn the congruence lattices of periodic unary algebras
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 27-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author describes all commutative unary algebras with finite number of unary operations which have distributive lattice of congruences and cyclic elements in every operation. It proves the following result: Theorem 2. Let ${\mathbf A}$=${\langle A, f_1, f_2, \ldots, f_m \rangle }$ is a connected commutative unary algebra, $m\geq 1$ and $n_1, n_2, \ldots,n_m\geq 1$ — such a natural numbers, that $f_i^{n_i}(x)=x$ for every $i\leq m$ and every $x\in A$. Then the following condition are equivalent: (1) The lattice of congruence on ${\mathbf A}$ has a distributive property. (2) One can find natural numbers $k_1, k_2, \ldots, k_m\geq 1$ and such an unary operation $h$ on ${\mathbf A}$, that for every $i=1, 2, \ldots, m$ and every $x\in A$ it holds $f_i(x)=h^{k_i}(x)$.
Keywords: unary operation, commutative unary algebra, lattice of congruence, distributive property, cyclic element.
@article{VVGUM_2014_2_a3,
     author = {V. V. Popov},
     title = {{\CYRO}n the congruence lattices of periodic unary algebras},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {27--30},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/}
}
TY  - JOUR
AU  - V. V. Popov
TI  - Оn the congruence lattices of periodic unary algebras
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 27
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/
LA  - ru
ID  - VVGUM_2014_2_a3
ER  - 
%0 Journal Article
%A V. V. Popov
%T Оn the congruence lattices of periodic unary algebras
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 27-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/
%G ru
%F VVGUM_2014_2_a3
V. V. Popov. Оn the congruence lattices of periodic unary algebras. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 27-30. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a3/

[1] V.\;A. Artamonov, V.\;N. Saliy, L.\;A. Skornyakov, General Algebra, v. II, Nauka Publ., M., 1991, 480 pp.

[2] A.\;P. Boschenko, “Pseudocomplementation in the congruence lattice of a unary”, Algebraic systems, Volgograd, 1989, 23–26

[3] D.\;P Egorova, “Congruence structure of unary algebra”, Ordered sets and lattices, 5, Saratov, 1978, 11–44

[4] A.\;I. Maltsev, Algebraic systems, Nauka Publ., M., 1970, 392 pp.

[5] V.\;V. Popov, On collective normality, rotatable graphs, and congruences of unoids, LAP LAMBERT Academic Publishing, Saarbrücken, 2013, 64 pp.

[6] V.\;L. Usoltsev, Minimal unary algebras with two commuting operations, Deposit at All-Union Institute of Scientific and Technical Information, no. 3857-D96, 1996, 20 pp.

[7] J. Berman, “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38