Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_2_a2, author = {S. A. Korolkov}, title = {On interrelation between resolvabilities of some boundary value problems for $L$-harmonic functions on unbounded open subsets of {Riemannian} manifolds}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {17--26}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/} }
TY - JOUR AU - S. A. Korolkov TI - On interrelation between resolvabilities of some boundary value problems for $L$-harmonic functions on unbounded open subsets of Riemannian manifolds JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 17 EP - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/ LA - ru ID - VVGUM_2014_2_a2 ER -
%0 Journal Article %A S. A. Korolkov %T On interrelation between resolvabilities of some boundary value problems for $L$-harmonic functions on unbounded open subsets of Riemannian manifolds %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2014 %P 17-26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/ %G ru %F VVGUM_2014_2_a2
S. A. Korolkov. On interrelation between resolvabilities of some boundary value problems for $L$-harmonic functions on unbounded open subsets of Riemannian manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 17-26. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/
[1] S.\;A. Korolkov, “Harmonic functions on Riemannian manifolds with ends”, Sib. Math. J., 49:6 (2008), 1319–1332
[2] S.\;A. Korolkov, A.\;G. Losev, “Solutions of elliptic partial differential equations on Riemannian manifolds with ends”, Science Journal of VolSU. Mathematics. Physics, 2011, no. 14 (1), 23–40
[3] S.\;A. Korolkov, E.\;S. Korolkova, “Boundary problems for harmonic functions on unbounded open sets of Riemannian manifolds”, Science Journal of VolSU. Mathematics. Physics, 2013, no. 18 (1), 45–58
[4] A.\;G. Losev, “Some Liouville theorems on Riemannian manifolds of special type”, Russian Mathematics, 1991, no. 12, 15–24
[5] A.\;G. Losev, “On the hyberbolicity criterior for noncompact Riemannian manifolds os special type”, Mathematical Notes, 59:4 (1996), 558–564
[6] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions for Shrödinger equation on Riemannian products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110
[7] E.\;A. Mazepa, “Boundary value problems for the stationary Shrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599
[8] M.\;T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721
[9] A. Grigoryan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249
[10] S.\;A. Korolkov, A.\;G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1 (2012), 459–472
[11] A.\;G. Losev, E.\;A. Mazepa, V.\;Y. Chebanenko, “Unbounded solutions of the Stationary Shr.odinger equation on Riemannian manifolds”, Computational Methods and Function Theory, 43:3 (2002), 443–451
[12] M. Murata, “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Walter de Gruyter, Berlin, 1992, 251–259
[13] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18:4 (1983), 723–732