On interrelation between resolvabilities of some boundary value problems for $L$-harmonic functions on unbounded open subsets of Riemannian manifolds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $L$-harmonic functions, i.e. solutions of the stationary Shrodinger equation $$Lu\equiv\Delta u-c(x)u=0$$ on unbounded open set of Riemannian manifold and establish some existence results. Let $M$ be a smooth connected noncompact Riemannian manifold without boundary and $\Omega$ be a simply connected unbounded open set of $M$ with $C^1$-smooth boundary $\partial \Omega$. Let $\{B_k\}_{k=1}^\infty$ be a smooth exhaustion of $M$, i.e. sequence of precompact open subsets of $M$ with $C^1$-smooth boundaries $\partial B_k$ such that $M=\bigcup_{k=1}^\infty B_k$, $\overline B_k\subset B_{k+1}$ for all $k$. In what follows we assume $B_k\cap \Omega\ne\emptyset$, sets $B_k\cap\Omega$ are simply connected, $\partial B_k$ and $\partial \Omega$ are transversal for all $k$. Let $B'_k=B_k \setminus\Omega$ and $v_{M\setminus B'_k}$ be a $L$-potential of $B'_k$ relative to $M$ (see, for example, [10; 11]). By the maximum principle, the sequence $\{v_{M\setminus B'_k}\}_{k=1}^\infty$ is point-wise increasing and converges to an $L$-harmonic in $\Omega$ function $v_{\Omega}=\lim\limits_{k\to\infty}v_{M\setminus B'_k}$. It is easy to see that $0\leq v_{\Omega}\leq 1$, $v_\Omega|_{\partial\Omega}=1$. The function $v_{\Omega}$ is called the $L$-potential of the $\Omega$. Two continuous in $\Omega$ (in $\partial\Omega$, resp.) functions $f_1$ and $f_2$ are called weak equivalent in $\Omega$ (in $\partial\Omega$, resp.) relative to $v_{\Omega}$ ($f_1\stackrel{\Omega}{\simeq} f_2$, $f_1\stackrel{\partial\Omega}{\simeq} f_2$, resp.) if there exists some constant $C$, such that $|f_1-f_2|\leq C v_{\Omega}\rm{\; in \;} \Omega$ ($|f_1-f_2|\leq C v_{\Omega}$ in $\partial\Omega$, resp.). A continuous function $f$ in $\Omega$ is called weak admissible relative to $\Omega$ ($f\in K^*_\Omega(\Omega)$) if there is an compact $B$ and $L$-harmonic function $u$ in $\Omega\setminus B$ such that $u\stackrel{\Omega}{\simeq} f$ in $\Omega\setminus B$. We have the following results. Theorem 1. Let $B$ be an compact, $v_{M\setminus B}$ be a $L$-potential of $B$ relative to $M$ and $u(x)$ be an $L$-harmonic in $\Omega\setminus B$ function. Then there exists a constant $C$ and $L$-harmonic in $\Omega$ function $f$ such that $ |f-u|\leq Cv_{M\setminus B} \in{\; in \;} \Omega\setminus B.$ Theorem 2. Let $f\in K^*_\Omega(\Omega)$. Then for any continuous in $\partial\Omega$ function $\varphi$ such that $\varphi\stackrel{\Omega}{\simeq}f$ in $\partial\Omega$, there exists solution of the following problem in $\Omega$ $$ \left\{\begin{array}{c} Lu=0 \rm{\; in \;}\Omega,\\ u|_{\partial\Omega}=\varphi,\\ u\stackrel{\Omega}{\simeq}f. \end{array}\right. $$
Keywords: boundary problems, $L$-harmonic functions, Riemannian manifolds, solutions of the stationary Shrodinger equation, equivalent functions.
@article{VVGUM_2014_2_a2,
     author = {S. A. Korolkov},
     title = {On interrelation between resolvabilities of some  boundary value problems for $L$-harmonic functions  on unbounded open subsets of {Riemannian} manifolds},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {17--26},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/}
}
TY  - JOUR
AU  - S. A. Korolkov
TI  - On interrelation between resolvabilities of some  boundary value problems for $L$-harmonic functions  on unbounded open subsets of Riemannian manifolds
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 17
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/
LA  - ru
ID  - VVGUM_2014_2_a2
ER  - 
%0 Journal Article
%A S. A. Korolkov
%T On interrelation between resolvabilities of some  boundary value problems for $L$-harmonic functions  on unbounded open subsets of Riemannian manifolds
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 17-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/
%G ru
%F VVGUM_2014_2_a2
S. A. Korolkov. On interrelation between resolvabilities of some  boundary value problems for $L$-harmonic functions  on unbounded open subsets of Riemannian manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 17-26. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a2/

[1] S.\;A. Korolkov, “Harmonic functions on Riemannian manifolds with ends”, Sib. Math. J., 49:6 (2008), 1319–1332

[2] S.\;A. Korolkov, A.\;G. Losev, “Solutions of elliptic partial differential equations on Riemannian manifolds with ends”, Science Journal of VolSU. Mathematics. Physics, 2011, no. 14 (1), 23–40

[3] S.\;A. Korolkov, E.\;S. Korolkova, “Boundary problems for harmonic functions on unbounded open sets of Riemannian manifolds”, Science Journal of VolSU. Mathematics. Physics, 2013, no. 18 (1), 45–58

[4] A.\;G. Losev, “Some Liouville theorems on Riemannian manifolds of special type”, Russian Mathematics, 1991, no. 12, 15–24

[5] A.\;G. Losev, “On the hyberbolicity criterior for noncompact Riemannian manifolds os special type”, Mathematical Notes, 59:4 (1996), 558–564

[6] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions for Shrödinger equation on Riemannian products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110

[7] E.\;A. Mazepa, “Boundary value problems for the stationary Shrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599

[8] M.\;T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721

[9] A. Grigoryan, “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249

[10] S.\;A. Korolkov, A.\;G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1 (2012), 459–472

[11] A.\;G. Losev, E.\;A. Mazepa, V.\;Y. Chebanenko, “Unbounded solutions of the Stationary Shr.odinger equation on Riemannian manifolds”, Computational Methods and Function Theory, 43:3 (2002), 443–451

[12] M. Murata, “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Walter de Gruyter, Berlin, 1992, 251–259

[13] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18:4 (1983), 723–732