Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_2_a1, author = {I. I. Bodrenko}, title = {Some properties of normal sections and geodesics}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--16}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/} }
I. I. Bodrenko. Some properties of normal sections and geodesics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 6-16. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/
[1] I.\;I. Bodrenko, “Internal geometry of externally recurrent submanifolds”, OP Surveys in Applied and Industrial Mathematics, 11:2 (2004), 301
[2] I.\;I. Bodrenko, “The criterion of parallism of the second fundamental form”, OP Surveys in Applied and Industrial Mathematics, 6:1 (1999), 124–125
[3] I.\;I. Bodrenko, “Normally flat pseudo-recurrent submatifolds in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 8:2 (2001), 540–541
[4] I.\;I. Bodrenko, “On hypersurfaces with cyclic recurrent second fundamental form in Euclidean space”, Science Journal of Volgograd State University. Mathematics. Physics, 2010, no. 13, 23–35
[5] I.\;I. Bodrenko, “On Kaehler submanifolds with recurrent the second fundamental form”, OP Surveys in Applied and Industrial Mathematics, 13:4 (2006), 617–618
[6] I.\;I. Bodrenko, “On submanifolds with zero normal torsion in Euclidean space”, Siberian Mathematical Journal, 35:3 (1994), 527–536
[7] I.\;I. Bodrenko, “On submanifolds with cyclic recurrent the second fundamental form in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 18:5 (2011), 746
[8] I.\;I. Bodrenko, “On pseudorecurrent submatifolds”, OP Surveys in Applied and Industrial Mathematics, 8:1 (2001), 109
[9] I.\;I. Bodrenko, “On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to $(n + 1)$-dimensional plane”, Mathematical Notes, 54:4 (1993), 19–23
[10] I.\;I. Bodrenko, Generalized Darboux surfaces in spaces of constant curvature, LAP LAMBERT Academic Publishing GmbH Co, Saarbrücken, Germany, 2013, 200 pp.
[11] I.\;I. Bodrenko, “Parallel fields of normal $q$-directions on pseudo-recurrent submatifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2002, no. 7, 5–11
[12] I.\;I. Bodrenko, “Submanifolds with recurrent the second fundamental form in spaces of constant curvature”, OP Surveys in Applied and Industrial Mathematics, 14:4 (2007), 679–682
[13] I.\;I. Bodrenko, “Structure of pseudo-recurrent submatifolds in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 7:2 (2000), 318–319
[14] I.\;I. Bodrenko, “A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$”, Sbornik Mathematics, 185:11 (1994), 23–30
[15] V.\;T. Fomenko, “Twodimensional surfaces with flat normal connections in spaces of constant curvature carrying geodesics of constant curvature”, Mathematical Notes, 64:4 (2000), 579–586
[16] V.\;T. Fomenko, “Some properties of two-dimensional surfaces with zero normal torsion in $E^4$”, Sbornik Mathematics, 106 (148):4 (8) (1978), 589–603
[17] V.\;T. Fomenko, “A generalization of the Darboux surfaces”, Mathematical Notes, 48:2 (1990), 107–113
[18] I.\;I. Bodrenko, “A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$”, Sbornik Mathematics, 83:2 (1995), 315–320
[19] I.\;I. Bodrenko, “On generalized Darboux surfaces in Euclidean spaces”, Torus Actions: Topology, Geometry and Number Theory, Khabarovsk, Pacific National University Publ., 2013, 14–15
[20] I.\;I. Bodrenko, “On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to $(n + 1)$-dimensional plane”, Mathematical Notes, 54:4 (1994), 992–994
[21] I.\;I. Bodrenko, “On submanifolds with zero normal torsion in Euclidean space”, Siberian Mathematical Journal, 35:3 (1994), 470–478
[22] C.\;U. Sánchez, “The holomorphic $2$-number of a Hermitian symmetric space”, Geometriae Dedicata, 72:1 (1998), 69–81
[23] C.\;U. Sánchez, A.\;M. Giunta, J.\;E. Tala, “Geodesics and normal sections on real flag manifolds”, Revista de la Unión Mathemática Argentina, 48:1 (2007), 17–25