Some properties of normal sections and geodesics
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 6-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F^{n}$ be $n$-dimensional $(n \geq 2)$ submanifold in $(n+p)$-dimensional Euclidean space $E^{n+p}$ $(p \geq 1)$. Let $x$ be arbitrary point $F^n$, $T_xF^n$ be tangent space to $F^n$ at the point $x$. Let $\gamma_g(x, t)$ be a geodesic on $F^n$ passing through the point $x\in F^n$ in the direction $t\in T_x F^n$. Denote by $k_g (x, t)$ and $\varkappa_g (x, t)$ curvature and torsion of geodesic $\gamma_g (x, t)\subset E^{n+p}$, respectively, calculated for point $x$. Torsion $\varkappa_g(x, t)$ of geodesic $\gamma_g (x, t)$ is called geodesic torsion of submanifold $F^n\subset E^{n+p}$ at the point $x$ in the direction $t$. Let $\gamma_N(x, t)$ be a normal section of submanifold $F^n\subset E^{n+p}$ at the point $x\in F^n$ in the direction $t\in T_xF^n$. Denote by $k_N (x, t)$ and $\varkappa_N (x, t)$ curvature and torsion of normal section $\gamma_N (x, t)\subset E^{n+p}$, respectively, calculated for point $x$. Denote by $b$ the second fundamental form of $F^n$, by $\overline\nabla$ the connection of van der Waerden — Bortolotti. The fundamental form $b\not=0$ is called cyclic recurrent if on $F^n$ there exists $1$-form $\mu$ such that $$ \overline\nabla_X b(Y,Z)= \mu(X)b(Y,Z) + \mu(Y)b(Z,X)+ \mu(Z)b(X,Y) $$ for all vector fields $X, Y, Z$ tangent to $F^n$. Submanifold $F^n\subset E^{n+p}$ with cyclic recurrent the second fundamental form $b\ne 0$ is called cyclic recurrent submanifold. The properties of normal sections $\gamma_N(x, t)$ and geodesics $\gamma_g(x, t)$ on cyclic recurrent submanifolds $F^n\subset E^{n+p}$ are studied in this article. The conditions for which cyclic recurrent submanifolds $F^n \subset E^{n+p}$ have zero geodesic torsion $\varkappa_g(x, t)\equiv 0$ at every point $x\in F^n$ in every direction $t\in T_xF^n$ are derived in this article. Denote by ${\mathcal R}_0$ a set of submanifolds $F^n\subset E^{n+p}$, on which $$ k_g (x,t)\ne 0, \quad \varkappa_g(x,t)\equiv 0, \quad \forall x\in F^n, \quad \forall t\in T_xF^n. $$ The following theorem is proved in this article. Let $F^n$ be a cyclic recurrent submanifold in $E^{n+p}$ with no asymptotic directions. Then $F^n$ belongs to the set ${\mathcal R}_0$ if and only if the following condition holds: $$ k_N(x, t) = k(x), \quad \forall x\in F^n, \quad \forall t\in T_xF^n. $$
Keywords: the second fundamental form, cyclic recurrent submanifold, geodesic torsion, normal curvature, connection of van der Waerden — Bortolotti.
Mots-clés : normal section, normal torsion
@article{VVGUM_2014_2_a1,
     author = {I. I. Bodrenko},
     title = {Some properties of normal sections and geodesics},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--16},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - Some properties of normal sections and geodesics
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 6
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/
LA  - ru
ID  - VVGUM_2014_2_a1
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T Some properties of normal sections and geodesics
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 6-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/
%G ru
%F VVGUM_2014_2_a1
I. I. Bodrenko. Some properties of normal sections and geodesics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 6-16. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a1/

[1] I.\;I. Bodrenko, “Internal geometry of externally recurrent submanifolds”, OP Surveys in Applied and Industrial Mathematics, 11:2 (2004), 301

[2] I.\;I. Bodrenko, “The criterion of parallism of the second fundamental form”, OP Surveys in Applied and Industrial Mathematics, 6:1 (1999), 124–125

[3] I.\;I. Bodrenko, “Normally flat pseudo-recurrent submatifolds in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 8:2 (2001), 540–541

[4] I.\;I. Bodrenko, “On hypersurfaces with cyclic recurrent second fundamental form in Euclidean space”, Science Journal of Volgograd State University. Mathematics. Physics, 2010, no. 13, 23–35

[5] I.\;I. Bodrenko, “On Kaehler submanifolds with recurrent the second fundamental form”, OP Surveys in Applied and Industrial Mathematics, 13:4 (2006), 617–618

[6] I.\;I. Bodrenko, “On submanifolds with zero normal torsion in Euclidean space”, Siberian Mathematical Journal, 35:3 (1994), 527–536

[7] I.\;I. Bodrenko, “On submanifolds with cyclic recurrent the second fundamental form in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 18:5 (2011), 746

[8] I.\;I. Bodrenko, “On pseudorecurrent submatifolds”, OP Surveys in Applied and Industrial Mathematics, 8:1 (2001), 109

[9] I.\;I. Bodrenko, “On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to $(n + 1)$-dimensional plane”, Mathematical Notes, 54:4 (1993), 19–23

[10] I.\;I. Bodrenko, Generalized Darboux surfaces in spaces of constant curvature, LAP LAMBERT Academic Publishing GmbH Co, Saarbrücken, Germany, 2013, 200 pp.

[11] I.\;I. Bodrenko, “Parallel fields of normal $q$-directions on pseudo-recurrent submatifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2002, no. 7, 5–11

[12] I.\;I. Bodrenko, “Submanifolds with recurrent the second fundamental form in spaces of constant curvature”, OP Surveys in Applied and Industrial Mathematics, 14:4 (2007), 679–682

[13] I.\;I. Bodrenko, “Structure of pseudo-recurrent submatifolds in Euclidean spaces”, OP Surveys in Applied and Industrial Mathematics, 7:2 (2000), 318–319

[14] I.\;I. Bodrenko, “A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$”, Sbornik Mathematics, 185:11 (1994), 23–30

[15] V.\;T. Fomenko, “Twodimensional surfaces with flat normal connections in spaces of constant curvature carrying geodesics of constant curvature”, Mathematical Notes, 64:4 (2000), 579–586

[16] V.\;T. Fomenko, “Some properties of two-dimensional surfaces with zero normal torsion in $E^4$”, Sbornik Mathematics, 106 (148):4 (8) (1978), 589–603

[17] V.\;T. Fomenko, “A generalization of the Darboux surfaces”, Mathematical Notes, 48:2 (1990), 107–113

[18] I.\;I. Bodrenko, “A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$”, Sbornik Mathematics, 83:2 (1995), 315–320

[19] I.\;I. Bodrenko, “On generalized Darboux surfaces in Euclidean spaces”, Torus Actions: Topology, Geometry and Number Theory, Khabarovsk, Pacific National University Publ., 2013, 14–15

[20] I.\;I. Bodrenko, “On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to $(n + 1)$-dimensional plane”, Mathematical Notes, 54:4 (1994), 992–994

[21] I.\;I. Bodrenko, “On submanifolds with zero normal torsion in Euclidean space”, Siberian Mathematical Journal, 35:3 (1994), 470–478

[22] C.\;U. Sánchez, “The holomorphic $2$-number of a Hermitian symmetric space”, Geometriae Dedicata, 72:1 (1998), 69–81

[23] C.\;U. Sánchez, A.\;M. Giunta, J.\;E. Tala, “Geodesics and normal sections on real flag manifolds”, Revista de la Unión Mathemática Argentina, 48:1 (2007), 17–25