Dynamic modeling for estimating the Galactic mass halo according to new data of the masers kinematics
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Observational data on the kinematics of the masers with measured trigonometric parallaxes lead to a revision of the quantitative parameters of our Galaxy rotation curve. In particular, the rotation velocity $ V $ near of the Sun, apparently, more than $250$ km/s for the distance to the galactic center $ R = 8-8.5$ kpc. The choice of velocity $V$ and radius $R$ values influences on decomposition of gravitational potential on the main subsystems' result. In particular, there is a problem of specification of the main galactic components' masses — disk and dark halo. The masers kinematics data of the bulge and bar parameters, and vertical structure of the stellar disk were also used. The series of the Galaxys dynamical models are constructed assuming that the entire disk is near the gravitational-stability limit. On the basis of these models have been new estimates of the dark halo mass at different distances from the galaxy center within the radius of $12$ kpc. Estimate mass values obtained with observational data of masers give the following results. Inside radius $ r 12 $ kpc relative mass of the halo is $\mu (r) = M_h (r) / M_d = 2$, which is $25\%$ higher than the previously obtained value of the coefficient $\mu = 1.6$. Accordingly the observed distributions of dispersions stars velocities obtained in models with the values of the surface density in the solar neighborhood $66 M_\odot /$pc$^2$, the total mass of a disk thus doesn't exceed $\times 10^{10}$ of $M_\odot 5$.
Keywords: Galaxy, Milky Way, rotation curve, masers, $N$-body simulation.
@article{VVGUM_2014_1_a7,
     author = {M. A. Butenko and A. V. Khoperskov},
     title = {Dynamic modeling for estimating the {Galactic} mass halo according to new data of the masers kinematics},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {61--68},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a7/}
}
TY  - JOUR
AU  - M. A. Butenko
AU  - A. V. Khoperskov
TI  - Dynamic modeling for estimating the Galactic mass halo according to new data of the masers kinematics
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 61
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a7/
LA  - ru
ID  - VVGUM_2014_1_a7
ER  - 
%0 Journal Article
%A M. A. Butenko
%A A. V. Khoperskov
%T Dynamic modeling for estimating the Galactic mass halo according to new data of the masers kinematics
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 61-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a7/
%G ru
%F VVGUM_2014_1_a7
M. A. Butenko; A. V. Khoperskov. Dynamic modeling for estimating the Galactic mass halo according to new data of the masers kinematics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 61-68. http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a7/

[1] A.\;M. Fridman, A.\;V. Khoperskov, Physics of galactic disks, Fizmatlit Publ., M., 2011, 645 pp.

[2] J.\;N. Bahcall, “Prominent spiral arms in the gaseous outer galaxy disks”, Astrophys. J., 276 (1984), 156–168

[3] J.\;E. Barnes, P. Hut, “Error analysis of a tree code”, J. Suppl. Ser., 70 (1989), 389–417

[4] T.\;C. Beers, J. Sommer-Larsen, “Kinematics of metal-poor stars in the galaxy”, Astrophys. J. Suppl. Ser., 96 (1995), 175–221

[5] V.\;V. Bobylev, A.\;T. Bajkova, “Galactic parameters from masers with trigonometric parallaxes”, MNRAS, 408:3 (2010), 1788–1795

[6] V.\;V. Bobylev, A.\;T. Bajkova, “Galactic Kinematics from OB3 Stars with Distances Determined from Interstellar Ca II Lines”, Astronomy Letters, 37:8 (2011), 526–535

[7] J. Brand, L. Blitz, “The Velocity Field of the Outer Galaxy”, Astron. and Astrophys., 275:1 (1993), 67–90

[8] D.\;P. Clemens, “Massachusetts-Stony Brook Galactic plane CO survey – The Galactic disk rotation curve”, Astrophys. J., 295 (1985), 422–428

[9] A.\;V. Khoperskov, D. Bizyaev, N. Tiurina, M.\;A. Butenko, “Numerical modelling of the vertical structure and dark halo parameters”, Astronomische Nachrichten, 331:7 (2010), 731–745

[10] A.\;V. Khoperskov, M.\;A. Eremin, S.\;A. Khoperskov, M.\;A. Butenko, A.\;G. Morozov, “Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo”, Astronomy Letters, 56:1 (2012), 16–28

[11] A.\;V. Khoperskov, N.\;V. Tyurina, “A Dynamical Model of the Galaxy”, Astronomy Reports, 47:6 (2003), 443–457

[12] S.\;A. Khoperskov, A.\;V. Khoperskov, M.\;A. Eremin, M.\;A. Butenko, “Polygonal Structures in a Gaseous Disk Numerical Simulations”, Astronomy Letters, 37:8 (2011), 563–575

[13] A.\;V. Khoperskov, A.\;V. Zasov, N.\;V. Tyurina, “Minimum Velocity Dispersion in Stable Stellar Disks. Numerical Simulations”, Astronomy Reports, 47:5 (2003), 357–376

[14] J.\;R. Lewis, K.\;C. Freeman, “Kinematics and chemical properties of the old disk of the Galaxy”, Astrophys. J., 97:1 (1989), 139–162

[15] M.\;J. Reid, K.\;M. Menten, X.\;W. Zheng, A. Brunthaler, L. Moscadelli, Y. Xu, B. Zhang, M. Sato, M. Honma, T. Hirota, K. Hachisuka, Y.\;K. Choi, G.\;A. Moellenbrock, A. Bartkiewicz, “Trigonometric Parallaxes of Massive Star-Forming Regions. VI. Galactic Structure, Fundamental Parameters, and Noncircular Motions”, APJ, 700:1 (2009), 137–148

[16] Y. Sofue, “The Most Completely Sampled Rotation Curves for Galaxies”, Astrophys. J., 458 (1996), 120–131

[17] Y. Sofue, Y. Tutui, M. Honma, A. Tomita, T. Takamiya, J. Koda, Y. Takeda, “Central Rotation Curves of Spiral Galaxies”, Astrophys. J., 523 (1999), 136–146

[18] A.\;V. Zasov, A.\;V. Khoperskov, N.\;V. Tyurina, “Stellar Velocity Dispersion and Mass Estimation for Galactic Disks”, Astronomy Letters, 30:9 (2004), 593–602