Numerical scheme cSPH --- TVD: investigation of influence slope limiters
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalisation of combined lagrange-eulerian numerical scheme cSPH — TVD for ideal gas-dynamics equations without extarnal forces in one-dimensional case was described. The results of the Riemann problems numerical simulation for different variants of this numerical scheme are shown. Influence of slope-limitiers and flux computation methods to quality of numerical solution are investigated. Six version of slope limiters are investigated: minmod, van Leer, van Albada, Kolgan, k-parameter and Colella — Woodward. Two methods of numerical flux computation also investigated: Lax — Friedrichs and Harten — Lax — van Leer. It is shown, that two pair of slope limiters leads to very similar numerical solution quality: minmod — Kolgan and van Leer — Colella — Woodward for the both version of numerical flux computation — Lax — Friedrichs and Harten — Lax — van Leer methods. For the Lax — Friedrichs method of numerical flux computation Colella– Woodward slope limiter give the best results and minmod the worse. For the Harten — Lax — van Leer method of numerical flux computation k-parameter slope limiter give the best results and Kolgan the worse. The $L_1$ relative error in density varying from $1.76\,\%$ to $3.1\,\%$ depending on the numerical flux computation method and kind of slope limiter. It is shown, that for all investigated variants of cSPH — TVD method numerical solution of Riemann problem very similar to exact. It is very interesting, that k-parameter slope limiter in combination with Lax — Friedrichs method of numerical flux computation leads to strange features near to contact discontinuity and rarefaction wave. But, in combination with Harten — Lax — van Leer method of numerical flux computation it leads to the best of all results without these strange features.
Keywords: numerical schemes, SPH, TVD, slope limiters, combined lagrange-eulerian approach.
@article{VVGUM_2014_1_a3,
     author = {N. M. Kuz'min and A. V. Belousov and T. S. Shushk{\cyre}vich and S. S. Khrapov},
     title = {Numerical scheme {cSPH} --- {TVD:} investigation of influence slope limiters},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {22--33},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/}
}
TY  - JOUR
AU  - N. M. Kuz'min
AU  - A. V. Belousov
AU  - T. S. Shushkеvich
AU  - S. S. Khrapov
TI  - Numerical scheme cSPH --- TVD: investigation of influence slope limiters
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 22
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/
LA  - ru
ID  - VVGUM_2014_1_a3
ER  - 
%0 Journal Article
%A N. M. Kuz'min
%A A. V. Belousov
%A T. S. Shushkеvich
%A S. S. Khrapov
%T Numerical scheme cSPH --- TVD: investigation of influence slope limiters
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 22-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/
%G ru
%F VVGUM_2014_1_a3
N. M. Kuz'min; A. V. Belousov; T. S. Shushkеvich; S. S. Khrapov. Numerical scheme cSPH --- TVD: investigation of influence slope limiters. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 22-33. http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/

[1] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme cSPH — TVD: front of shock wave simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2 (17), 60–67

[2] V.\;P. Kolgan, “The application of derivatives minimum values to construction finite-difference schemes for computation of gas dynamics discontinuous solutions”, Science notes of CAHI, 3:6 (1972), 68–77

[3] A.\;V. Pisarev, S.\;S. Khrapov, E.\;O. Agafonnikova, A.\;V. Khoperskov, “Numerical model of surface water dynamics in Volgas bed: estimation of roughness coefficient”, Journal of Udmurt university. Mathematics. Mechanics. Computer science, 2013, no. 1, 114–130

[4] A.\;V. Pisarev, S.\;S. Khrapov, A.\;V. Khoperskov, “Numerical scheme on the base of combined SPH — TVD approach: the problem of shear flows simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 2 (15), 138–141

[5] A.\;V. Khoperskov, S.\;S. Khrapov, A.\;V. Pisarev, A.\;A. Voronin, M.\;V. Eliseeva, I.\;A. Kobelev, “The problem of management hydrological regime in ecology-economic system «Volga HPS — Volga-Akhtuba flood-plain». Part 1. Simulation of surface water dynamics in springtime flood”, Problems of management, 2012, no. 5, 18–25

[6] S.\;S. Khrapov, A.\;V. Khoperskov, M.\;A. Eremin, Simulation of surface water dynamics, Izd-vo VolGU Publ., Volgograd, 2010, 132 pp.

[7] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical scheme for simulation of dynamics surface waters on the base of combined SPH — TVD approach”, Numerical methods and programming, 12:1 (2011), 282–297

[8] K.\;S. Shushkevich, N.\;M. Kuzmin, “One-dimensional numerical scheme for gas-dynamics simulation on the base of combined SPH — PPM approach”, Masters journal, 2013, no. 5 (20), 40–44

[9] G.\;D. van Albada, V. van Leer, W.\;W. Roberts, “A comparative study of computational methods to cosmic gas dynamics”, Astronomy and Astrophysics, 108:1 (1982), 76–84

[10] P. Colella, P.\;R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations”, Journal of Comutational Physics, 54:1 (1984), 174–201

[11] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49:3 (1983), 357–393

[12] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM Review, 25:1 (1983), 35–61

[13] S.\;S. Khrapov, A.\;V. Pisarev, I.\;A. Kobelev, A.\;G. Zhumaliev, E.\;O. Agafonnikova, A.\;G. Losev, A.\;V. Khoperskov, “The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage”, Advances in Mechanical Engineering, 2013 (2013), 787016, 1–11, Title from screen | DOI

[14] P.\;D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193

[15] V. van Leer, “Towards the ultimative conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275

[16] J.\;J. Monaghan, “Smoothed particle hydrodynamics”, Annual Review of Astronomy and Astrophysics, 30 (1992), 543–574

[17] P.\;L. Roe, J. Pike, “Efficient construction and use of approximate Riemann solvers”, Computing Methods in Applied Sciences and Engineering, VI, North-Holland, Amsterdam, 1983, 499–518

[18] C.\;W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77:2 (1988), 439–471