Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_1_a3, author = {N. M. Kuz'min and A. V. Belousov and T. S. Shushk{\cyre}vich and S. S. Khrapov}, title = {Numerical scheme {cSPH} --- {TVD:} investigation of influence slope limiters}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {22--33}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/} }
TY - JOUR AU - N. M. Kuz'min AU - A. V. Belousov AU - T. S. Shushkеvich AU - S. S. Khrapov TI - Numerical scheme cSPH --- TVD: investigation of influence slope limiters JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 22 EP - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/ LA - ru ID - VVGUM_2014_1_a3 ER -
%0 Journal Article %A N. M. Kuz'min %A A. V. Belousov %A T. S. Shushkеvich %A S. S. Khrapov %T Numerical scheme cSPH --- TVD: investigation of influence slope limiters %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2014 %P 22-33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/ %G ru %F VVGUM_2014_1_a3
N. M. Kuz'min; A. V. Belousov; T. S. Shushkеvich; S. S. Khrapov. Numerical scheme cSPH --- TVD: investigation of influence slope limiters. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 22-33. http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a3/
[1] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme cSPH — TVD: front of shock wave simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2 (17), 60–67
[2] V.\;P. Kolgan, “The application of derivatives minimum values to construction finite-difference schemes for computation of gas dynamics discontinuous solutions”, Science notes of CAHI, 3:6 (1972), 68–77
[3] A.\;V. Pisarev, S.\;S. Khrapov, E.\;O. Agafonnikova, A.\;V. Khoperskov, “Numerical model of surface water dynamics in Volgas bed: estimation of roughness coefficient”, Journal of Udmurt university. Mathematics. Mechanics. Computer science, 2013, no. 1, 114–130
[4] A.\;V. Pisarev, S.\;S. Khrapov, A.\;V. Khoperskov, “Numerical scheme on the base of combined SPH — TVD approach: the problem of shear flows simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 2 (15), 138–141
[5] A.\;V. Khoperskov, S.\;S. Khrapov, A.\;V. Pisarev, A.\;A. Voronin, M.\;V. Eliseeva, I.\;A. Kobelev, “The problem of management hydrological regime in ecology-economic system «Volga HPS — Volga-Akhtuba flood-plain». Part 1. Simulation of surface water dynamics in springtime flood”, Problems of management, 2012, no. 5, 18–25
[6] S.\;S. Khrapov, A.\;V. Khoperskov, M.\;A. Eremin, Simulation of surface water dynamics, Izd-vo VolGU Publ., Volgograd, 2010, 132 pp.
[7] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical scheme for simulation of dynamics surface waters on the base of combined SPH — TVD approach”, Numerical methods and programming, 12:1 (2011), 282–297
[8] K.\;S. Shushkevich, N.\;M. Kuzmin, “One-dimensional numerical scheme for gas-dynamics simulation on the base of combined SPH — PPM approach”, Masters journal, 2013, no. 5 (20), 40–44
[9] G.\;D. van Albada, V. van Leer, W.\;W. Roberts, “A comparative study of computational methods to cosmic gas dynamics”, Astronomy and Astrophysics, 108:1 (1982), 76–84
[10] P. Colella, P.\;R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations”, Journal of Comutational Physics, 54:1 (1984), 174–201
[11] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49:3 (1983), 357–393
[12] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM Review, 25:1 (1983), 35–61
[13] S.\;S. Khrapov, A.\;V. Pisarev, I.\;A. Kobelev, A.\;G. Zhumaliev, E.\;O. Agafonnikova, A.\;G. Losev, A.\;V. Khoperskov, “The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage”, Advances in Mechanical Engineering, 2013 (2013), 787016, 1–11, Title from screen | DOI
[14] P.\;D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193
[15] V. van Leer, “Towards the ultimative conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275
[16] J.\;J. Monaghan, “Smoothed particle hydrodynamics”, Annual Review of Astronomy and Astrophysics, 30 (1992), 543–574
[17] P.\;L. Roe, J. Pike, “Efficient construction and use of approximate Riemann solvers”, Computing Methods in Applied Sciences and Engineering, VI, North-Holland, Amsterdam, 1983, 499–518
[18] C.\;W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77:2 (1988), 439–471