Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_1_a1, author = {A. I. Bodrenko}, title = {Continuous $HG$-deformations of surfaces with boundary in {Euclidean} space}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--13}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a1/} }
A. I. Bodrenko. Continuous $HG$-deformations of surfaces with boundary in Euclidean space. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2014), pp. 6-13. http://geodesic.mathdoc.fr/item/VVGUM_2014_1_a1/
[1] A.\;I. Bodrenko, “Some properties of continuous almost $ARG$-deformations”, Russian Mathematics, 1996, no. 2 (405), 13–16 | MR | Zbl
[2] A.\;I. Bodrenko, “Continuous $MG$-deformations of surfaces with boundary in Euclidean space”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 1 (18), 6–23
[3] A.\;I. Bodrenko, “On properties of almost AR-deformations of hypersurfaces with condition of generalized sliding”, OP Surveys in Applied and Industrial Mathematics, 18:5 (2011), 745
[4] A.\;I. Bodrenko, “On defective index of tubular hypersurfaces in Euclidean space”, OP Surveys in Applied and Industrial Mathematics, 13:4 (2006), 616–617
[5] A.\;I. Bodrenko, “Surfaces with recurrent second fundament form in $E^3$”, OP Surveys in Applied and Industrial Mathematics, 11:2 (2004), 300–301
[6] A.\;I. Bodrenko, “Continuous $MG$-deformations of surfaces in Euclidean space”, Torus Actions: Topology, Geometry and Number Theory, Abstracts of the International open chinese-russian conference (02–07 September, 2013, Khabarovsk, Russia), Pacific National University Publ., Khabarovsk, 2013, 13–14 | MR
[7] A.\;I. Bodrenko, “Some properties of continuous almost $ARG$-deformations”, Russian Mathematics, 40:2 (1996), 11–14 | MR | Zbl