On a problem of control of trajectory bundles
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 35 (2025) no. 1, pp. 75-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Various problems of control of trajectory bundles constitute an important object of study in modern mathematical control theory. Such problems arise, for example, in studying the motion of a flow of charged particles, and also in the presence of incomplete information about the initial state of the controlled system. In the present article, for a nonlinear controlled object of a quite general form on a fixed time interval $[0,T]$, the problem of control of trajectory bundles with a non-single-point initial set is considered. On the reachable set at the moment $T>0$, the problem of maximization of a given continuous function is studied. This problem can be interpreted as a problem on the spread of trajectories of the controlled object. The corresponding maximum depends on the chosen admissible control $u(\cdot )$. In the article, the existence of a minimum on the set of admissible controls from this maximum is substantiated.
Keywords:
controlled object, the bundle of trajectories, attainable set, functional
@article{VUU_2025_35_1_a3,
author = {M. S. Nikol'skii},
title = {On a problem of control of trajectory bundles},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {75--81},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2025},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2025_35_1_a3/}
}
TY - JOUR AU - M. S. Nikol'skii TI - On a problem of control of trajectory bundles JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2025 SP - 75 EP - 81 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2025_35_1_a3/ LA - ru ID - VUU_2025_35_1_a3 ER -
M. S. Nikol'skii. On a problem of control of trajectory bundles. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 35 (2025) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/VUU_2025_35_1_a3/