On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 410-434
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let sets of functions $Z$ and $\Omega$ on the time interval $T$ be given, let there also be a multifunction (m/f) $\alpha$ acting from $\Omega$ to $Z$ and a finite set $\Delta$ of moments from $T$. The work deals with the following questions: the first one is the connection between the possibility of stepwise construction (specified by $\Delta$) of a selector $z$ of $\alpha(\omega)$ for an unknown step-by-step implemented argument $\omega\in\Omega$ and the existence of a multiselector (m/s) $\beta$ of the m/f $\alpha$ with a non-anticipatory property of special kind (we call it partially or $\Delta$-non-anticipated); the second question is when and how non-anticipated m/s could be expressed by means of  partially non-anticipated one; and the last question is how to build the above $\Delta$-non-anticipated m/s $\beta$ for a given pair $(\alpha,\Delta)$.
The consideration of these questions is motivated by the presence of such step-by-step procedures in the differential game theory, for example, in the alternating integral method, in pursuit–evasion problems posed with use of counter-strategies, and in the method of guide control.
It is shown that the step-by-step construction of the value $z\in\alpha(\omega)$ can be carried out for any steps-implemented argument $\omega$ if and only if the above m/s $\beta$ is non-empty-valued. The key point of the work is the description of finite-step procedure for calculation of this $\Delta$-non-anticipated m/s $\beta$. Conditions are given that guarantee the m/s $\beta$ be a non-anticipative one. Illustrative examples are considered that include, in particular, control problems with disturbance.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
non-anticipative multi-selectors, set-valued strategies, optimization of guarantee
                    
                    
                    
                  
                
                
                @article{VUU_2024_34_3_a6,
     author = {D. A. Serkov},
     title = {On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {410--434},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a6/}
}
                      
                      
                    TY - JOUR AU - D. A. Serkov TI - On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 410 EP - 434 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a6/ LA - en ID - VUU_2024_34_3_a6 ER -
%0 Journal Article %A D. A. Serkov %T On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 410-434 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a6/ %G en %F VUU_2024_34_3_a6
D. A. Serkov. On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 410-434. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a6/
