On one problem for a fourth-order mixed-type equation that degenerates inside and on the boundary of a domain
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 312-328
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the article, a nonlocal boundary value problem has been investigated for a fourth-order mixed-type equation degenerating inside and on the boundary of a domain. Applying the method of separation of variables to the problem under study, the spectral problem for an ordinary differential equation is obtained. The Green function of the last problem is constructed, with the help of which it is equivalently reduced to the Fredholm integral equation of the second kind with a symmetric kernel, which implies the existence of eigenvalues and the system of eigenfunctions for the spectral problem. The theorem of expansion of a given function into a uniformly convergent series with respect to the system of eigenfunctions is proved. Using the found integral equation and Mercer's theorem, a uniform convergence of some bilinear series depending on the found eigenfunctions is proved. The order of the Fourier coefficients is established. The solution of the problem under study is written as the sum of the Fourier series with respect to the system of eigenfunctions of the spectral problem. An estimate for the problem's solution is obtained, from which its continuous dependence on the given functions follows.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
degenerate mixed-type equations, spectral problem, Green's function, integral equation, Fourier series, method of separation of variables.
                    
                  
                
                
                @article{VUU_2023_33_2_a8,
     author = {A. K. Urinov and D. A. Usmonov},
     title = {On one problem for a fourth-order mixed-type equation that degenerates inside and on the boundary of a domain},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {312--328},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a8/}
}
                      
                      
                    TY - JOUR AU - A. K. Urinov AU - D. A. Usmonov TI - On one problem for a fourth-order mixed-type equation that degenerates inside and on the boundary of a domain JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 312 EP - 328 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a8/ LA - ru ID - VUU_2023_33_2_a8 ER -
%0 Journal Article %A A. K. Urinov %A D. A. Usmonov %T On one problem for a fourth-order mixed-type equation that degenerates inside and on the boundary of a domain %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 312-328 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a8/ %G ru %F VUU_2023_33_2_a8
A. K. Urinov; D. A. Usmonov. On one problem for a fourth-order mixed-type equation that degenerates inside and on the boundary of a domain. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 312-328. http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a8/
