A new hybrid conjugate gradient algorithm for unconstrained optimization
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 348-364
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
unconstrained optimization, conjugate gradient methods
Mots-clés : conjugacy conditions and sufficient descent conditions.
                    
                  
                
                
                Mots-clés : conjugacy conditions and sufficient descent conditions.
@article{VUU_2023_33_2_a10,
     author = {Hafaidia Imane and H. Guebbai and Al-Baali Mehiddin and M. Ghiat},
     title = {A new hybrid conjugate gradient algorithm for unconstrained optimization},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {348--364},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a10/}
}
                      
                      
                    TY - JOUR AU - Hafaidia Imane AU - H. Guebbai AU - Al-Baali Mehiddin AU - M. Ghiat TI - A new hybrid conjugate gradient algorithm for unconstrained optimization JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 348 EP - 364 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a10/ LA - en ID - VUU_2023_33_2_a10 ER -
%0 Journal Article %A Hafaidia Imane %A H. Guebbai %A Al-Baali Mehiddin %A M. Ghiat %T A new hybrid conjugate gradient algorithm for unconstrained optimization %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 348-364 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a10/ %G en %F VUU_2023_33_2_a10
Hafaidia Imane; H. Guebbai; Al-Baali Mehiddin; M. Ghiat. A new hybrid conjugate gradient algorithm for unconstrained optimization. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 348-364. http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a10/
