On the type of the meromorphic function of finite order
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 212-224

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a meromorphic function on the complex plane of finite order $\rho>0$. Let $\rho(r)$ be a proximate order in the sense of Boutroux such that $\limsup\limits_{r\to\infty}\rho(r)=\rho$, $\liminf\limits_{r\to\infty}\rho(r)=\alpha>0$. If $[\alpha]\alpha\leqslant\rho[\alpha]+1$ then the types of $T(r,f)$ and $|N|(r,f)$ coincide with respect to $\rho(r)$. If there are integers between $\alpha$ and $\rho$, then the resulting criterion is formulated in terms of the upper density of zeros and poles of the function $f$ and their argument symmetry.
Keywords: meromorphic function, function order, function type, upper density, argument symmetry.
@article{VUU_2023_33_2_a1,
     author = {M. V. Kabanko},
     title = {On the type of the meromorphic function of finite order},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {212--224},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a1/}
}
TY  - JOUR
AU  - M. V. Kabanko
TI  - On the type of the meromorphic function of finite order
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 212
EP  - 224
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a1/
LA  - ru
ID  - VUU_2023_33_2_a1
ER  - 
%0 Journal Article
%A M. V. Kabanko
%T On the type of the meromorphic function of finite order
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 212-224
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a1/
%G ru
%F VUU_2023_33_2_a1
M. V. Kabanko. On the type of the meromorphic function of finite order. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 212-224. http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a1/