Hitting functions for mixed partitions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 197-211
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.
Keywords:
hitting time, limit theorem.
Mots-clés : irrational rotation, dynamical partition
Mots-clés : irrational rotation, dynamical partition
@article{VUU_2023_33_2_a0,
author = {A. A. Dzhalilov and M. K. Homidov},
title = {Hitting functions for mixed partitions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {197--211},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a0/}
}
TY - JOUR AU - A. A. Dzhalilov AU - M. K. Homidov TI - Hitting functions for mixed partitions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 197 EP - 211 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a0/ LA - en ID - VUU_2023_33_2_a0 ER -
A. A. Dzhalilov; M. K. Homidov. Hitting functions for mixed partitions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 2, pp. 197-211. http://geodesic.mathdoc.fr/item/VUU_2023_33_2_a0/