Mots-clés : balayage
@article{VUU_2023_33_1_a7,
author = {V. R. Manivannan and M. Venkataraman},
title = {$\Delta$-functions on recurrent random walks},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {119--129},
year = {2023},
volume = {33},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a7/}
}
TY - JOUR AU - V. R. Manivannan AU - M. Venkataraman TI - $\Delta$-functions on recurrent random walks JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 119 EP - 129 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a7/ LA - en ID - VUU_2023_33_1_a7 ER -
V. R. Manivannan; M. Venkataraman. $\Delta$-functions on recurrent random walks. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a7/
[1] McGuinness S., “Recurrent networks and a theorem of Nash–Williams”, Journal of Theoretical Probability, 4:1 (1991), 87–100 | DOI | MR | Zbl
[2] Anandam V., “Some potential-theoretic techniques in non-reversible Markov chains”, Rendiconti del Circolo Matematico di Palermo, 62:2 (2013), 273–284 | DOI | MR | Zbl
[3] Anandam V., Harmonic functions and potentials on finite or infinite networks, Springer, Berlin, 2011 | DOI | MR | Zbl
[4] Abodayeh K., Anandam V., “Potential-theoretic study of functions on an infinite network”, Hokkaido Mathematical Journal, 37:1 (2008), 59–73 | DOI | MR | Zbl
[5] Anandam V., Abodayeh K., “Non-locally-finite parahyperbolic networks”, Memoirs of The Graduate School of Science and Engineering, Shimane University. Series B: Mathematics, 47 (2014), 19–35 | DOI | MR | Zbl
[6] Nash-Williams C.St J.A., “Random walk and electric currents in networks”, Mathematical Proceedings of the Cambridge Philosophical Society, 55:2 (1959), 181–194 | DOI | MR | Zbl
[7] Lyons T., “A simple criterion for transience of a reversible Markov chain”, The Annals of Probability, 11:2 (1983), 393–402 | DOI | MR | Zbl
[8] Woess W., “Random walks on infinite graphs and groups — a survey on selected topics”, Bulletin of the London Mathematical Society, 26:1 (1994), 1–60 | DOI | MR | Zbl
[9] Cohen J.M., Colonna F., Singman D., “The distribution of radial eigenvalues of the Euclidean Laplacian on homogeneous isotropic trees”, Complex Analysis and its Synergies, 7:2 (2021), 21 | DOI | MR | Zbl
[10] Colonna F., Tjani M., “Essential norms of weighted composition operators from reproducing kernel Hilbert spaces into weighted-type spaces”, Houston Journal of Mathematics, 42:3 (2016), 877–903 | MR | Zbl
[11] Cohen J.M., Colonna F., Singman D., “A global Riesz decomposition theorem on trees without positive potentials”, Journal of the London Mathematical Society, 75:1 (2007), 1–17 | DOI | MR | Zbl
[12] Anandam V., Damlakhi M., “Perturbed Laplace operators on finite networks”, Revue Roumaine de Mathématiques Pures et Appliquées, 61:2 (2016), 75–92 | MR | Zbl
[13] Abodayeh K., Anandam V., “Schrödinger networks and their Cartesian products”, Mathematical Methods in the Applied Sciences, 44:6 (2020), 4342–4347 | DOI | MR
[14] Abodayeh K., Anandam V., “Quasi-bounded supersolutions of discrete Schrödinger equations”, Applied Mathematical Sciences, 10:34 (2016), 1693–1704 | DOI
[15] Nathiya N., Amulya Smyrna Ch., “Infinite Schrödinger networks”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:4 (2021), 640–650 | DOI | MR | Zbl
[16] Anandam V., “Random walks on infinite trees”, Revue Roumaine de Mathématiques Pures et Appliquées, 65:1 (2020), 75–82 | MR | Zbl
[17] Lawler G.F., Introduction to stochastic processes, Chapman and Hall/CRC, New York, 2006 | DOI | MR | Zbl