On some properties of *-integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 66-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work continues the author's research on the theory of regulated functions and *-integral. The possibility to express a regulated function as a sum of right-continuous and left-continuous functions (called $rl$-representation) is studied. A limit theorem for the *-integral is proved. It allows approximating discontinuous integrands and integrators by sequences of absolutely continuous functions. A new result on $\delta$-correctness of the solution of an ordinary linear differential equation with generalized functions in coefficients is proved. This solution is defined via a quasi-differential equation. A formula for the total variation of an indefinite *-integral of a $\sigma$-continuous function with respect to a function of bounded variation is given. It generalizes the well-known formula for computing the total variation of an absolutely continuous function. The formula is also interesting in the case of an indefinite $RS$-integral.
Keywords: regulated functions, $\sigma$-continuous functions, $rl$-representation, *-integral, quasi-differential equation, generalized functions, $\delta$-correctness.
@article{VUU_2023_33_1_a4,
     author = {V. Ya. Derr},
     title = {On some properties of *-integral},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {66--89},
     year = {2023},
     volume = {33},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a4/}
}
TY  - JOUR
AU  - V. Ya. Derr
TI  - On some properties of *-integral
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 66
EP  - 89
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a4/
LA  - ru
ID  - VUU_2023_33_1_a4
ER  - 
%0 Journal Article
%A V. Ya. Derr
%T On some properties of *-integral
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 66-89
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a4/
%G ru
%F VUU_2023_33_1_a4
V. Ya. Derr. On some properties of *-integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 66-89. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a4/

[1] Derr V.Ya., “On the extention of a Rieman–Stieltjes integral”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 135–152 (in Russian) | DOI | MR | Zbl

[2] Derr V.Ya., Theory of functions of real argument. Lectures and exercises, Vysshaya Shkola, Moscow, 2008

[3] Levin A.Yu., “On the theory of ordinary differential equations. II”, Vestnik Yaroslavskogo Universiteta, 1974, no. 8, 122–144 (in Russian)

[4] Dieudonné J., Foundations of modern analysis, Academic Press, New York, 1960 | MR | Zbl

[5] Tolstonogov A.A., “Properties of the space of proper functions”, Mathematical Notes of the Academy of Sciences of the USSR, 35:6 (1984), 422–427 | DOI | MR | Zbl

[6] Schwartz L., Analyse mathématique. I, Hermann, Paris, 1967 | MR

[7] Derr V.Ya., Kinzebulatov D.M., “Differential equations with distributions admitting multiplication on discontinuous functions”, Vestnik Udmurtskogo Universiteta. Matematika, 2005, no. 1, 35–58 (in Russian)

[8] Derr V.Ja., “On the exact pairs of classes for the Stieltjes integral”, Functional Differential Equations, 27:3–4 (2020), 85–94 | MR | Zbl

[9] Baranov V.N., Rodionov V.I., “On nonlinear metric spaces of functions of bounded variation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:3 (2022), 341–360 (in Russian) | DOI | MR

[10] Dunford N., Schwartz J.T., Linear operators. Part 1: General theory, Interscience Publishers, New York-London, 1958 | MR

[11] Schwabik S., Tvrdý M., Vejvoda O., Differential and integral equations. Boundary value problems and adjoints, Academia, Praha, 1979 | MR | Zbl

[12] Natanson I.P., Theory of functions of real variable. Vol. 1, Frederick Ungar, New York, 1961 | MR | MR

[13] Filippov A.F., Differential equations with discontinuous righthand sides, Kluwer Acad. Publ., Dordrecht, 1988 | DOI | MR | MR

[14] Derr V.Ya., “On the definition of a solution of a linear differential equation with generalized functions in the coefficients”, Sov. Math., Dokl., 37:1 (1988), 56–59 | MR | Zbl

[15] Fichtenholz G.M., Differential– und Integralrechnung. III, Johann Ambrosius Barth, Leipzig, 1992 | MR | Zbl

[16] Derr V.Ya., “On linear differential equations with generalized functions as coefficients”, Differentsial'nye Uravneniya, 25:12 (1989), 2187–2188 (in Russian)

[17] Derr V.Ya., “On the solutions of differential equations with generalized functions in coefficients”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 1995, no. 1, 51–75 (in Russian) | Zbl

[18] Derr V.Ya., “Ordinary linear differential equations with generalized functions in coefficients: survey”, Funktsional'no-differentsial'nye uravneniya: teoriya i prilozheniya, Perm National Research Polytechnic University, Perm, 2018, 60–86 (in Russian)

[19] Schin D., “Über die Lósungen einer quasi-Differentialgleichung der $n$-ten Ordnung”, Recueil Mathématique (Nouvelle série), 7(49):3 (1940), 479–532 (in Russian)