On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i. e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.
Keywords: set-valued mapping, ordered space, operator inclusion
Mots-clés : existence of solutions.
@article{VUU_2022_32_3_a1,
     author = {S. Benarab and E. A. Panasenko},
     title = {On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {361--382},
     year = {2022},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/}
}
TY  - JOUR
AU  - S. Benarab
AU  - E. A. Panasenko
TI  - On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 361
EP  - 382
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/
LA  - ru
ID  - VUU_2022_32_3_a1
ER  - 
%0 Journal Article
%A S. Benarab
%A E. A. Panasenko
%T On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 361-382
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/
%G ru
%F VUU_2022_32_3_a1
S. Benarab; E. A. Panasenko. On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/

[1] Aubin J.-P., Ekeland I., Applied nonlinear analysis, Wiley, New York, 1984 | MR | MR | Zbl

[2] Arutyunov A. V., Lectures on convex and set-valued analysis, Fizmatlit, M., 2014

[3] Borisovich Yu. G., Gel'man B. D., Myshkis A. D., Obukhovskii V. V., Introduction to the theory of set-valued mappings and differential inclusions, Librokom, M., 2011 | MR

[4] Chentsov A. G., Khachai D. M., “Relaxation of pursuit–evasion differential game and program absorption operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:1 (2020), 64–91 (in Russian) | DOI | MR | Zbl

[5] Zhukovskiy E. S., Panasenko E. A., “On fixed points of multi-valued maps in metric spaces and differential inclusions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 2, 12–26 | DOI | Zbl

[6] Clark F. H., Optimization and nonsmooth analysis, Wiley, New York, 1983 | MR | MR | Zbl

[7] Brøndsted A., “On a lemma of Bishop and Phelps”, Pacific Journal of Mathematics, 55:2 (1974), 335–341 | DOI | MR

[8] Granas A., Dugundji J., Fixed point theory, Springer, New York, 2003 | DOI | MR | Zbl

[9] Lyusternik L. A., Sobolev V. I., Short course on functional analysis, Vysshaya shkola, M., 1982 | MR

[10] Birkhoff G., Lattice theory, American Mathematical Society, New York, 1948 | MR | Zbl

[11] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points of set-valued mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 727–729 | DOI | DOI | MR | Zbl

[12] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “On coincidence points of mappings in partially ordered spaces”, Doklady Mathematics, 88:3 (2013), 710–713 | DOI | DOI | MR | Zbl

[13] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179 (2015), 13–33 | DOI | MR | Zbl

[14] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | DOI | MR | Zbl

[15] Benarab S., Zhukovskiy E. S., Merchela W., “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 4, 2019, 52–63 (in Russian) | DOI | MR

[16] Zhukovskiy E. S., “On ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | DOI | MR | MR | Zbl

[17] Zhukovskiy E. S., “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94 | DOI | MR | Zbl

[18] Benarab S., Zhukovskiy E. S., “Coincidence points of two mappings acting from a partially ordered space to an arbitrary set”, Russian Mathematics, 64:5 (2020), 8–16 | DOI | DOI | MR | Zbl

[19] Benarab S., Zhukovskaya Z. T., Zhukovskiy E. S., Zhukovskiy S. E., “Functional and differential inequalities and their applications to control problems”, Differential Equations, 56:11 (2020), 1440–1451 | DOI | DOI | MR | Zbl

[20] Benarab S., “On Chaplygin's theorem for an implicit differential equation of order $n$”, Russian Universities Reports. Mathematics, 26:135 (2021), 225–233 (in Russian) | DOI | Zbl

[21] Benarab S., “Two-sided estimates for solutions of boundary value problems for implicit differential equations”, Russian Universities Reports. Mathematics, 26:134 (2021), 216–220 (in Russian) | DOI | Zbl

[22] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1981 | MR

[23] Aleskerov F. T., Khabina E. L., Shvarts D. A., Binary relations, graphs and collective solutions, State University Higher School of Economics, M., 2006

[24] Heinonen J., Lectures on analysis on metric spaces, Springer, New York, 2001 | DOI | MR | Zbl

[25] Arutyunov A. V., Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya: Mathematics, 82:2 (2018), 245–272 | DOI | DOI | MR | Zbl

[26] Zhukovskiy E. S., “The fixed points of contractions of $f$-quasimetric spaces”, Siberian Mathematical Journal, 59:6 (2018), 1063–1072 | DOI | MR | Zbl

[27] Danford N., Schwartz J. T., Linear operators, v. 1, General theory, Interscience, New York, 1958 | MR

[28] Shragin I. V., “Superpositional measurability under generalized Caratheodory conditions”, Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (in Russian)

[29] Serova I. D., “Superpositional measurability of a multivalued function under generalized Caratheodory conditions”, Russian Universities Reports. Mathematics, 26:135 (2021), 305–314 (in Russian) | DOI | Zbl

[30] Birkhoff G., Lattice theory, American Mathematical Society, Providence, 1967 | MR | MR | Zbl

[31] Arutyunov A. V., “Stability of coincidence points and properties of covering mappings”, Mathematical Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl

[32] Fomenko T. N., “Stability of cascade search”, Izvestiya: Mathematics, 74:5 (2010), 1051–1068 | DOI | DOI | MR | Zbl