On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382
Voir la notice de l'article provenant de la source Math-Net.Ru
Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i. e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.
Keywords:
set-valued mapping, ordered space, operator inclusion
Mots-clés : existence of solutions.
Mots-clés : existence of solutions.
@article{VUU_2022_32_3_a1,
author = {S. Benarab and E. A. Panasenko},
title = {On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {361--382},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/}
}
TY - JOUR AU - S. Benarab AU - E. A. Panasenko TI - On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 361 EP - 382 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/ LA - ru ID - VUU_2022_32_3_a1 ER -
%0 Journal Article %A S. Benarab %A E. A. Panasenko %T On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 361-382 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/ %G ru %F VUU_2022_32_3_a1
S. Benarab; E. A. Panasenko. On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/