On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382

Voir la notice de l'article provenant de la source Math-Net.Ru

Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i. e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.
Keywords: set-valued mapping, ordered space, operator inclusion
Mots-clés : existence of solutions.
@article{VUU_2022_32_3_a1,
     author = {S. Benarab and E. A. Panasenko},
     title = {On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {361--382},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/}
}
TY  - JOUR
AU  - S. Benarab
AU  - E. A. Panasenko
TI  - On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 361
EP  - 382
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/
LA  - ru
ID  - VUU_2022_32_3_a1
ER  - 
%0 Journal Article
%A S. Benarab
%A E. A. Panasenko
%T On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 361-382
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/
%G ru
%F VUU_2022_32_3_a1
S. Benarab; E. A. Panasenko. On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 361-382. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a1/