Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 483-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For real-valued functions $f$, defined on subsets of real linear spaces, the notions of extreme subarguments, extreme epiarguments, natural convex $\check{f}$ and natural concave $\hat{f}$ envelopes are introduced. It is shown that for any strictly convex function $g$, any point of the global maximum of the function $f+g$ is an extreme subargument for the function $f$. A similar result is obtained for functions of the form $f/v + g$. Based on these results, a method is proposed, that facilitates the search for global extrema of functions in some cases. It is proved that under certain conditions the functions $f/v+g$ and $\hat{f}/v+g$ have the same global maximum and the same points of the global maximum. Necessary and sufficient conditions for the naturalness of the convex envelope of function are given. A sufficient condition for the invariance of values of the concave envelope $\hat{f}$ during narrowing the domain of $f$ is established. Extreme sub- and epiarguments for continuous nowhere differentiable Gray-Takagi function $K(x)$ of Kobayashi on the segment $[0;1]$ are found. Moreover, the global extrema of the function $K(x)/\cos{x}$ and the global maximum of the function $K(x)-\sqrt{x(1-x)}$ on $[0;1]$ are calculated. The article is provided with examples and graphic illustrations.
Keywords: nondifferentiable optimization, natural convex and concave envelopes of function, Gray Takagi function of Kobayashi.
Mots-clés : extreme subarguments (subabscissae) and epiarguments (epiabscissae) of function
@article{VUU_2019_29_4_a1,
     author = {O. E. Galkin and S. Yu. Galkina},
     title = {Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {483--500},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a1/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
TI  - Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2019
SP  - 483
EP  - 500
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a1/
LA  - ru
ID  - VUU_2019_29_4_a1
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%T Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2019
%P 483-500
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a1/
%G ru
%F VUU_2019_29_4_a1
O. E. Galkin; S. Yu. Galkina. Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 4, pp. 483-500. http://geodesic.mathdoc.fr/item/VUU_2019_29_4_a1/

[1] V. F. Dem'yanov, V. N. Malozemov, Introduction to minimax, Dover, New York, 1990 | MR | MR | Zbl

[2] N. Sukhorukova, J. Ugon, “Chebyshev approximation by linear combinations of fixed knot polynomial splines with weighting functions”, Journal of Optimization Theory and Applications, 171:2 (2016), 536–549 | DOI | MR | Zbl

[3] Z. Kobayashi, “Digital sum problems for the Gray code representation of natural numbers”, Interdisciplinary Information Sciences, 8:2 (2002), 167–175 | DOI | MR | Zbl

[4] L. H. Y. Chen, H. K. Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: A survey”, Probability Surveys, 11 (2014), 177–236 | DOI | MR | Zbl

[5] O. E. Galkin, S. Yu. Galkina, “Global extrema of the Gray Takagi function of Kobayashi and binary digital sums”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 17–25 (in Russian) | DOI | MR | Zbl

[6] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Springer, New York, 1985 | MR | MR

[7] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl

[8] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Elsevier Science, Amsterdam, 1979 | MR

[9] E. S. Polovinkin, M. V. Balashov, Elements of convex and strongly convex analysis, Fizmatlit, M., 2007

[10] S. Elhedhli, J. L. Goffin, J. P. Vial, “Nondifferentiable optimization”, Encyclopedia of optimization, Springer, Boston, MA, 2009, 2584–2590 | DOI

[11] A. Bagirov, N. Karmitsa, M. M. Mäakeläa, Introduction to nonsmooth optimization. Theory, practice and software, Springer, 2014 | DOI | MR | Zbl

[12] N. Ovcharova, J. Gwinner, “A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities”, Journal of Optimization Theory and Applications, 162:3 (2014), 754–778 | DOI | MR | Zbl

[13] A. V. Kolosnitsyn, “Computational efficiency of the simplex embedding method in convex nondifferentiable optimization”, Computational Mathematics and Mathematical Physics, 58:2 (2018), 215–222 | DOI | MR | Zbl

[14] Y. Mishura, A. Schied, “On (signed) Takagi-Landsberg functions: $p$th variation, maximum, and modulus of continuity”, Journal of Optimization Theory and Applications, 473:1 (2019), 258–272 | DOI | MR | Zbl

[15] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Nauka, M., 1976

[16] L. Schwartz, Analyse mathématique, v. I, Hermann, 1967 | MR

[17] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Analysis Exchange, 37:1 (2011), 1–54 https://projecteuclid.org/euclid.rae/1335806762 | DOI | MR

[18] F. Preparata, M. Shamos, “Computational geometry. An introduction”, Springer, New York, 1985 | DOI | MR | Zbl