@article{VUU_2019_29_1_a4,
author = {O. A. Narmanov},
title = {Invariant solutions of the two-dimensional heat equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {52--60},
year = {2019},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a4/}
}
TY - JOUR AU - O. A. Narmanov TI - Invariant solutions of the two-dimensional heat equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2019 SP - 52 EP - 60 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a4/ LA - ru ID - VUU_2019_29_1_a4 ER -
O. A. Narmanov. Invariant solutions of the two-dimensional heat equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 29 (2019) no. 1, pp. 52-60. http://geodesic.mathdoc.fr/item/VUU_2019_29_1_a4/
[1] Lie S., Sheffers G., Symmetries of differential equations, v. 1, Lectures on differential equations with known infinitesimal transformations, Regular and Chaotic Dynamics, M.–Izhevsk, 2011
[2] Lie S., Sheffers G., Symmetries of differential equations, v. 3, Geometry of contact transformations, Regular and Chaotic Dynamics, Izhevsk, 2011
[3] Gainetdinova A. A., “Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 143–160 (in Russian) | DOI | MR | Zbl
[4] Ayub M., Khan M., Mahomed F. M., “Sesond-order systems of ODEs admitting three-dimensional Lie algebras and integrability”, Journal of Applied Mathematiss, 2013 (2013), 147921, 15 pp. | DOI | MR | Zbl
[5] Gainetdinova A. A., Gazizov R. K., “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 473:2197 (2017), 20160461 | DOI | MR | Zbl
[6] Wafo Soh C., Mahomed F. M., “Reduction of order for systems of ordinary differential equations”, Journal of Nonlinear Mathematical Physics, 11:1 (2004), 13–20 | DOI | MR | Zbl
[7] Dorodnitsyn V. A., Knyazeva I. V., Svirshchevskij S. R., “Group properties of the heat-conduction equation with a source in the two- and three-dimensional cases”, Differential Equations, 19 (1983), 901–908 | MR | Zbl
[8] Olver P. J., Applications of Lie groups to differential equations, Springer, 1986, 513 pp. | MR | Zbl
[9] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, 1982, 432 pp. | DOI | MR | Zbl
[10] Narmanov O. A., “Lie algebra of infinitesimal generators of the symmetry group of the heat equation”, Journal of Applied Mathematics and Physics, 6:2 (2018), 373–381 | DOI
[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 481 pp. | MR