Keywords: high-frequency oscillations, stability, rigid body.
@article{VUU_2017_27_1_a8,
author = {E. A. Vishenkova and O. V. Kholostova},
title = {On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {98--120},
year = {2017},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a8/}
}
TY - JOUR AU - E. A. Vishenkova AU - O. V. Kholostova TI - On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 98 EP - 120 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a8/ LA - ru ID - VUU_2017_27_1_a8 ER -
%0 Journal Article %A E. A. Vishenkova %A O. V. Kholostova %T On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 98-120 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a8/ %G ru %F VUU_2017_27_1_a8
E. A. Vishenkova; O. V. Kholostova. On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 98-120. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a8/
[1] Stephenson A., “On a new type of dynamical stability”, Memoirs and Proceedings of the Manchester Literary Philosophical Society, 52:2(8) (1908), 1–10
[2] Blekhman I. I., Vibration mechanics, Fizmatlit, M., 1994, 400 pp.
[3] Strizhak T. G., Methods of research of dynamic systems of the type “pendulum”, Nauka, Alma-Ata, 1981, 253 pp.
[4] Kholostova O. V., Problems of dynamics of solids with vibrating suspension, Regular and Chaotic Dynamics, M.–Izhevsk, 2016, 308 pp.
[5] Yudovich V. I., “Vibrodynamics and vibrogeometry of mechanical systems with constraints”, Uspekhi Mekhaniki, 4:3 (2006), 26–158 (in Russian) | Zbl
[6] Kapitza P. L., “Pendulum with a vibrating suspension”, Usp. Fiz. Nauk, 44:5 (1951), 7–20 (in Russian) | DOI
[7] Kapitza P. L., “Dynamic stability of a pendulum with an oscillating point of suspension”, Zh. Eksper. Teor. Fiz., 21:5 (1951), 588–597 (in Russian)
[8] Bogolyubov N. N., “The theory of perturbations in nonlinear mechanics”, Sbornik Trudov Inst. Stroit. Mekh., Akad. Nauk Ukr. SSR, 1950, no. 14, 9–34 (in Russian)
[9] Bardin B. S., Markeyev A. P., “The stability of the equilibrium of a pendulum for vertical oscillations of the point of suspension”, Journal of Applied Mathematics and Mechanics, 59:6 (1995), 879–886 | DOI | MR | Zbl
[10] Kholostova O. V., “On stability of the periodic motions of the pendulum with a horizontally vibrating suspension point”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1997, no. 4, 35–39 (in Russian)
[11] Markeyev A. P., “The dynamics of a spherical pendulum with a vibrating suspension”, Journal of Applied Mathematics and Mechanics, 63:2 (1999), 205–211 | DOI | MR | Zbl
[12] Kholostova O. V., “On the motions of a pendulum with a vibrating suspension point”, Theoretical mechanics, 24, Lomonosov Moscow State University, M., 2000, 157–167 (in Russian)
[13] Kholostova O. V., “On the motions of a double pendulum with vibrating suspension point”, Mechanics of Solids, 44:2 (2009), 184–197 | DOI | MR
[14] Vishenkova E. A., Kholostova O. V., “To dynamics of a double pendulum with a horizontally vibrating point of suspension”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 2, 114–129 (in Russian) | DOI
[15] Kholostova O. V., “On the periodic motion of Lagrange's top with vibrating suspension”, Mechanics of solids, 37:1 (2002), 26–38
[16] Kholostova O. V., “The dynamics of a Lagrange top with vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 63:5 (1999), 741–750 | DOI | MR | Zbl
[17] Kholostova O. V., “A case of periodic motion for a Lagrange gyroscope with a vibrating suspension”, Doklady Physics, 45:12 (2000), 690–693 | DOI | MR
[18] Kholostova O. V., “On a case of periodic motions of the Lagrangian top with vibrating fixed point”, Regular Chaotic Dynamics, 4:4 (1999), 81–93 | DOI | MR | Zbl
[19] Markeev A. P., “On the motion of a heavy dynamically symmetric rigid body with vibrating suspension point”, Mechanics of Solids, 47:4 (2012), 373–379 | DOI
[20] Markeev A. P., “On the theory of motion of a rigid body with a vibrating suspension”, Doklady Physics, 54:8 (2009), 392–396 | DOI | MR | Zbl
[21] Markeyev A. P., “The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 75:2 (2011), 132–139 | DOI | MR | Zbl
[22] Kholostova O. V., “On stability of relative equilibria of a rigid body with a vibrating point of support”, Vestn. Ross. Univ. Dr. Nar. Ser. Mat. Inform. Fiz., 2011, no. 2, 111–122 (in Russian)
[23] Safonov A. I., “Influence of viscous friction on stability balance of the body with a vibrating suspension”, Vestnik Moskovskogo Aviatsionnogo Instituta, 21:2 (2014), 158–168 (in Russian)
[24] Staude O., “Ueber permanente Rotationsaxen bei der Bewegung eines schweren Körpers um einen festen Punkt”, Journal für die reine und angewandte Mathematik, 1894:113 (1894), 318–334 | DOI | MR | Zbl
[25] Mlodzeevskii B. K., “About a permanent axis in the motion of a heavy rigid body around a fixed point”, Proceedings of the Department of Physical Sciences of the Society of Naturalists, 7:1 (1894), 46–48 (in Russian)
[26] Kholostova O. V., Investigation of stability of Staude permanent rotations, Regular and Chaotic Dynamics, M.–Izhevsk, 2008, 128 pp.
[27] Grammel R., Der kreisel. Seine theorie und seine anwendungen, v. 1, 2, Berlin, 1950
[28] Rumyantsev V. V., “Stability of permanent rotations of a heavy rigid bodies”, Prikl. Mat. Mekh., 20:1 (1956), 51–66 (in Russian) | Zbl
[29] Rumyantsev V. V., “On stability of the rotation of a heavy rigid body with one fixed point in the case of S. V. Kovalevskaya”, Prikl. Mat. Mekh., 18:4 (1954), 457–458 (in Russian) | Zbl
[30] Magnus K., Kreisel. Theorie und anwendungen, Springer, Berlin, 1971, 507 pp. | MR | Zbl
[31] Kovalev A. M., Savchenko A. Ia., “Stability of uniform rotations of a rigid body about a principal axis”, Journal of Applied Mathematics and Mechanics, 39:4 (1975), 623–633 | DOI | MR | Zbl
[32] Sergeev V. S., “On the stability of permanent rotation of a heavy solid body about a fixed point”, Journal of Applied Mathematics and Mechanics, 40:3 (1976), 370–378 | DOI | Zbl
[33] Kovalev A. M., Savchenko A. Ya., “Stability of stationary motions of Hamiltonian systems in the presence of fourth order resonance”, Solid Mechanics, 9, Naukova Dumka, Kiev, 1977, 40–44 (in Russian)
[34] Kholostova O. V., “On the stability of the specific motions of a heavy rigid body due to fast vertical vibrations of one of its points”, Nelineinaya Dinamika, 11:1 (2015), 99–116 (in Russian) | DOI | Zbl
[35] Vishenkova E. A., “Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical”, Nelineinaya Dinamika, 11:3 (2015), 459–474 (in Russian) | DOI | Zbl
[36] Markeev A. P., Libration points in celestial mechanics and cosmodynamics, Nauka, M., 1978, 312 pp.
[37] Arnold V. I., Kozlov V. V., Neyshtadt A. I., “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, 3rd edition, Springer-Verlag, Berlin, 2006, 518 pp. | MR