@article{VUU_2017_27_1_a3,
author = {V. A. Kyrov},
title = {Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {42--53},
year = {2017},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/}
}
TY - JOUR AU - V. A. Kyrov TI - Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 42 EP - 53 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/ LA - ru ID - VUU_2017_27_1_a3 ER -
%0 Journal Article %A V. A. Kyrov %T Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 42-53 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/ %G ru %F VUU_2017_27_1_a3
V. A. Kyrov. Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 42-53. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/
[1] Kulakov Yu. I., “The one principle underlying classical physics”, Soviet Physics Doklady, 15:7 (1971), 666–668 | MR
[2] Mikhailichenko G. G., “Two-dimensional geometry”, Soviet Mathematics. Doklady, 24:2 (1981), 346–348 | MR | Zbl
[3] Mikhailichenko G. G., “The solution of functional equations in the theory of physical structures”, Soviet Mathematics. Doklady, 13:5 (1972), 1377–1380 | MR | Zbl
[4] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI
[5] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 (in Russian)
[6] Kyrov V. A., “Functional equations in symplectic geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)
[7] Kyrov V. A., “On some class of functional-differential equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 26:1 (2012), 31–38 (in Russian) | DOI | Zbl
[8] Mikhailichenko G. G., The group symmetry of physical structures, Barnaul State Pedagogical University, Barnaul, 2003, 204 pp.
[9] Elsgolts L. E., Differential equations and the calculus of variations, Nauka, M., 1969, 424 pp.
[10] Mikhailichenko G. G., “Functional equations in geometry of two sets”, Russian Mathematics, 54:7 (2010), 56–63 | DOI | MR | Zbl