Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 42-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a classification of phenomenologically symmetric geometries of two sets of rank $(n+1,m)$ with $n\geqslant 2$ and $m\geqslant 3$ is constructed by the method of embedding. The essence of this method is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets by the known phenomenologically symmetric geometries of two sets of a rank which is lower by unity. By the known metric function of the phenomenologically symmetric geometry of two sets of rank $(n+1,n)$, we find the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+1)$, on the basis of which we find later the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+2)$. Then we prove that there is no embedding of the phenomenologically symmetric geometry of two sets of rank $(n+1,n+2)$ in the phenomenologically symmetric geometry of two sets of rank $(n+1,n+3)$. At the end of the paper, we complete the classification using the mathematical induction method and taking account of the symmetry of a metric function with respect to the first and the second argument. To solve the problem, we write special functional equations, which reduce to the well-known differential equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
phenomenologically symmetric geometry of two sets, metric function, differential equation.
                    
                  
                
                
                @article{VUU_2017_27_1_a3,
     author = {V. A. Kyrov},
     title = {Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {42--53},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/}
}
                      
                      
                    TY - JOUR AU - V. A. Kyrov TI - Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 42 EP - 53 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/ LA - ru ID - VUU_2017_27_1_a3 ER -
%0 Journal Article %A V. A. Kyrov %T Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 42-53 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/ %G ru %F VUU_2017_27_1_a3
V. A. Kyrov. Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 42-53. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/
