Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 42-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a classification of phenomenologically symmetric geometries of two sets of rank $(n+1,m)$ with $n\geqslant 2$ and $m\geqslant 3$ is constructed by the method of embedding. The essence of this method is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets by the known phenomenologically symmetric geometries of two sets of a rank which is lower by unity. By the known metric function of the phenomenologically symmetric geometry of two sets of rank $(n+1,n)$, we find the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+1)$, on the basis of which we find later the metric function of the phenomenologically symmetric geometry of rank $(n+1,n+2)$. Then we prove that there is no embedding of the phenomenologically symmetric geometry of two sets of rank $(n+1,n+2)$ in the phenomenologically symmetric geometry of two sets of rank $(n+1,n+3)$. At the end of the paper, we complete the classification using the mathematical induction method and taking account of the symmetry of a metric function with respect to the first and the second argument. To solve the problem, we write special functional equations, which reduce to the well-known differential equations.
Keywords: phenomenologically symmetric geometry of two sets, metric function, differential equation.
@article{VUU_2017_27_1_a3,
     author = {V. A. Kyrov},
     title = {Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {42--53},
     year = {2017},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 42
EP  - 53
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/
LA  - ru
ID  - VUU_2017_27_1_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 42-53
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/
%G ru
%F VUU_2017_27_1_a3
V. A. Kyrov. Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 42-53. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a3/

[1] Kulakov Yu. I., “The one principle underlying classical physics”, Soviet Physics Doklady, 15:7 (1971), 666–668 | MR

[2] Mikhailichenko G. G., “Two-dimensional geometry”, Soviet Mathematics. Doklady, 24:2 (1981), 346–348 | MR | Zbl

[3] Mikhailichenko G. G., “The solution of functional equations in the theory of physical structures”, Soviet Mathematics. Doklady, 13:5 (1972), 1377–1380 | MR | Zbl

[4] Kyrov V. A., “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI

[5] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 (in Russian)

[6] Kyrov V. A., “Functional equations in symplectic geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)

[7] Kyrov V. A., “On some class of functional-differential equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 26:1 (2012), 31–38 (in Russian) | DOI | Zbl

[8] Mikhailichenko G. G., The group symmetry of physical structures, Barnaul State Pedagogical University, Barnaul, 2003, 204 pp.

[9] Elsgolts L. E., Differential equations and the calculus of variations, Nauka, M., 1969, 424 pp.

[10] Mikhailichenko G. G., “Functional equations in geometry of two sets”, Russian Mathematics, 54:7 (2010), 56–63 | DOI | MR | Zbl