@article{VUU_2016_26_3_a1,
author = {V. A. Kyrov},
title = {Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank~$(N+1,2)$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {312--323},
year = {2016},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/}
}
TY - JOUR AU - V. A. Kyrov TI - Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 312 EP - 323 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/ LA - ru ID - VUU_2016_26_3_a1 ER -
%0 Journal Article %A V. A. Kyrov %T Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 312-323 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/ %G ru %F VUU_2016_26_3_a1
V. A. Kyrov. Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 312-323. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/
[1] Kulakov Yu. I., “The one principle underlying classical physics”, Soviet Physics Doklady, 15:7 (1971), 666–668 | MR
[2] Mikhailichenko G. G., “Two-dimensional geometry”, Soviet Mathematics. Doklady, 24:2 (1981), 346–348 | MR | Zbl
[3] Mikhailichenko G. G., “The solution of functional equations in the theory of physical structures”, Soviet Mathematics. Doklady, 13:5 (1972), 1377–1380 | Zbl
[4] Mikhailichenko G. G., The mathematical apparatus of the theory of physical structures, Gorno-Altaisk State University, Gorno-Altaisk, 1997, 144 pp.
[5] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 (in Russian) | MR | Zbl
[6] Kyrov V. A., “Functional equations in symplectic geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)
[7] Kyrov V. A., “On some class of functional-differential equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 1(26), 2012, 31–38 (in Russian) | DOI
[8] Mikhailichenko G. G., The group symmetry of physical structures, Barnaul State Pedagogical University, Barnaul, 2003, 204 pp.
[9] Kulakov Yu. I., Elements of the theory of physical structures, Novosibirsk State University, Novosibirsk, 1968, 226 pp. | MR
[10] Elsgolts L. E., Differential equations and the calculus of variations, Nauka, Moscow, 1969, 424 pp. | MR