Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 312-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we propose a new method of classification of metric functions of phenomenologically symmetric geometries of two sets. It is called the method of embedding, the essence of which is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets for the given phenomenologically symmetric geometry of two sets having rank less by 1. By the previously known metric function of phenomenologically symmetric geometry of two sets of the rank $(2,2)$ the metric function of phenomenologically symmetric geometry of two sets of the rank $(3,2)$ is found, by the phenomenologically symmetric geometry of two sets of the rank $(3,2)$ we find phenomenologically symmetric geometry of two sets of the rank $(4,2)$. Then it is proved that embedding of phenomenologically symmetric geometry of two sets of the rank $(4,2)$ into the phenomenologically symmetric geometry of two sets of the rank $(5,2)$ is absent. To solve the problem we generate special functional equations which are reduced to well-known differential equations.
Keywords: phenomenologically symmetric geometry of two sets, metric function, differential equation.
@article{VUU_2016_26_3_a1,
     author = {V. A. Kyrov},
     title = {Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank~$(N+1,2)$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {312--323},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 312
EP  - 323
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/
LA  - ru
ID  - VUU_2016_26_3_a1
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 312-323
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/
%G ru
%F VUU_2016_26_3_a1
V. A. Kyrov. Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 312-323. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a1/

[1] Kulakov Yu. I., “The one principle underlying classical physics”, Soviet Physics Doklady, 15:7 (1971), 666–668 | MR

[2] Mikhailichenko G. G., “Two-dimensional geometry”, Soviet Mathematics. Doklady, 24:2 (1981), 346–348 | MR | Zbl

[3] Mikhailichenko G. G., “The solution of functional equations in the theory of physical structures”, Soviet Mathematics. Doklady, 13:5 (1972), 1377–1380 | Zbl

[4] Mikhailichenko G. G., The mathematical apparatus of the theory of physical structures, Gorno-Altaisk State University, Gorno-Altaisk, 1997, 144 pp.

[5] Kyrov V. A., “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 (in Russian) | MR | Zbl

[6] Kyrov V. A., “Functional equations in symplectic geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)

[7] Kyrov V. A., “On some class of functional-differential equation”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 1(26), 2012, 31–38 (in Russian) | DOI

[8] Mikhailichenko G. G., The group symmetry of physical structures, Barnaul State Pedagogical University, Barnaul, 2003, 204 pp.

[9] Kulakov Yu. I., Elements of the theory of physical structures, Novosibirsk State University, Novosibirsk, 1968, 226 pp. | MR

[10] Elsgolts L. E., Differential equations and the calculus of variations, Nauka, Moscow, 1969, 424 pp. | MR