On the spectrum of a two-dimensional generalized periodic Schr\"{o}dinger operator. II
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 3-28
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrödinger operator $H_g+V=-\nabla g\nabla +V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda $. The solutions of the equation $(H_g+V)\varphi =0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon $ and the magnetic permeability $\mu $ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon $ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm \frac 12}$ for some $q\in [1,\frac 43 )$ satisfy the condition $\sum \bigl( |N|^{\frac 12}|(g^{\pm \frac 12})_N|\bigr) ^q +\infty $, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta $ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda $, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda ^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik^{\prime }\in {\mathbb C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik^{\prime })+V-\lambda $, $\lambda \in {\mathbb R}$, are invertible for some appropriately chosen complex vectors $k+ik^{\prime }\in {\mathbb C}^2$ (depending on $g$, $V$, and the number $\lambda $) with sufficiently large imaginary parts $k^{\prime }$.
Keywords:
generalized Schrödinger operator, absolute continuity of the spectrum, periodic potential.
@article{VUU_2014_2_a0,
author = {L. I. Danilov},
title = {On the spectrum of a two-dimensional generalized periodic {Schr\"{o}dinger} operator. {II}},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--28},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2014_2_a0/}
}
TY - JOUR
AU - L. I. Danilov
TI - On the spectrum of a two-dimensional generalized periodic Schr\"{o}dinger operator. II
JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY - 2014
SP - 3
EP - 28
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VUU_2014_2_a0/
LA - ru
ID - VUU_2014_2_a0
ER -
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a two-dimensional generalized periodic Schr\"{o}dinger operator. II
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2014
%P 3-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2014_2_a0/
%G ru
%F VUU_2014_2_a0
L. I. Danilov. On the spectrum of a two-dimensional generalized periodic Schr\"{o}dinger operator. II. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2014), pp. 3-28. http://geodesic.mathdoc.fr/item/VUU_2014_2_a0/