Scattering in the case of the discrete Schrödinger operator for intersected quantum wires
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 74-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the discrete Schrödinger operator on a graph with vertices on two intersecting lines, which is perturbed by a decreasing potential. This operator is the Hamiltonian of an electron near a structure formed by a quantum dot and four outgoing quantum wires in the tight-binding approximation widely used in the physics literature for studying such nanostructures. We have proved the existence and uniqueness of the solution of the corresponding Lippmann–Schwinger equation and obtained the asymptotic formula for it. The non-stationary scattering picture has been studied. The scattering problem for the above operator in the case of a small potential, and also in the case of both a small potential and small velocity of a quantum particle, is investigated. Asymptotic formulas for the probabilities of the particle propagation in all possible directions have been obtained.
Keywords: discrete Lippmann–Schwinger equation
Mots-clés : reflection and transmission amplitudes.
@article{VUU_2012_3_a7,
     author = {T. S. Tinyukova},
     title = {Scattering in the case of the discrete {Schr\"odinger} operator for intersected quantum wires},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {74--84},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - Scattering in the case of the discrete Schrödinger operator for intersected quantum wires
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 74
EP  - 84
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/
LA  - ru
ID  - VUU_2012_3_a7
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T Scattering in the case of the discrete Schrödinger operator for intersected quantum wires
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 74-84
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/
%G ru
%F VUU_2012_3_a7
T. S. Tinyukova. Scattering in the case of the discrete Schrödinger operator for intersected quantum wires. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 74-84. http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/

[1] Tinyukova T. S., “Quasi–levels of the discrete Schrödinger operator for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 88–97

[2] Tinyukova T. S., “The Lippmann–Schwinger equation for quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 99–104

[3] Tinyukova T. S., Chuburin Y. P., “Quasi–levels of the discrete Schrödinger equation with a decreasing potential on a graph”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 104–113

[4] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72 (2005), 056611, 7 pp. | DOI | MR

[5] Morozova L. I., Chuburin Y. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., Izhevsk, 2004, no. 1 (29), 85–94 | MR

[6] Chuburin Y. P., “A discrete Schrödinger operator on a graph”, Theor. Math. Phys., 165:1 (2010), 1335–1347 | DOI | Zbl

[7] Reed M., Simon B., Metody sovremennoi matematicheskoi fiziki (Methods of Mathematical Physics), v. I, Funktsionalnyi analiz (Functional analysis), Mir, Moscow, 1977, 357 pp. | MR

[8] Reed M., Simon B., Metody sovremennoi matematicheskoi fiziki (Methods of Mathematical Physics), v. III, Teoriya rasseyaniya (Scattering Theory), Mir, Moscow, 1982, 443 pp. | MR