Mots-clés : reflection and transmission amplitudes.
@article{VUU_2012_3_a7,
author = {T. S. Tinyukova},
title = {Scattering in the case of the discrete {Schr\"odinger} operator for intersected quantum wires},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {74--84},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/}
}
TY - JOUR AU - T. S. Tinyukova TI - Scattering in the case of the discrete Schrödinger operator for intersected quantum wires JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 74 EP - 84 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/ LA - ru ID - VUU_2012_3_a7 ER -
%0 Journal Article %A T. S. Tinyukova %T Scattering in the case of the discrete Schrödinger operator for intersected quantum wires %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2012 %P 74-84 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/ %G ru %F VUU_2012_3_a7
T. S. Tinyukova. Scattering in the case of the discrete Schrödinger operator for intersected quantum wires. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 74-84. http://geodesic.mathdoc.fr/item/VUU_2012_3_a7/
[1] Tinyukova T. S., “Quasi–levels of the discrete Schrödinger operator for a quantum waveguide”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 2, 88–97
[2] Tinyukova T. S., “The Lippmann–Schwinger equation for quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 99–104
[3] Tinyukova T. S., Chuburin Y. P., “Quasi–levels of the discrete Schrödinger equation with a decreasing potential on a graph”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 104–113
[4] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72 (2005), 056611, 7 pp. | DOI | MR
[5] Morozova L. I., Chuburin Y. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., Izhevsk, 2004, no. 1 (29), 85–94 | MR
[6] Chuburin Y. P., “A discrete Schrödinger operator on a graph”, Theor. Math. Phys., 165:1 (2010), 1335–1347 | DOI | Zbl
[7] Reed M., Simon B., Metody sovremennoi matematicheskoi fiziki (Methods of Mathematical Physics), v. I, Funktsionalnyi analiz (Functional analysis), Mir, Moscow, 1977, 357 pp. | MR
[8] Reed M., Simon B., Metody sovremennoi matematicheskoi fiziki (Methods of Mathematical Physics), v. III, Teoriya rasseyaniya (Scattering Theory), Mir, Moscow, 1982, 443 pp. | MR