On the spectrum of a periodic Schrödinger operator with potential in the Morrey space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 25-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the periodic Schrödinger operator $\widehat H_A+V$ in $\mathbb R^n$, $n\geqslant3$. The vector potential $A$ is supposed to satisfy some conditions which are fulfilled whenever the potential $A$ belongs to the Sobolev class $H^q_\mathrm{loc}(\mathbb R^n;\mathbb R^n)$, $q>\frac{n-1}2$, and also in the case where $\sum\|A_N\|_{\mathbb C^n}<+\infty$. Here $A_N$ are the Fourier coefficients of the potential $A$. We prove absolute continuity of the spectrum of the periodic Schrödinger operator $\widehat H_A+V$ provided that the scalar potential $V$ belongs to the Morrey space $\mathfrak L^{2,p}(\mathbb R^n)$, $p\in(\frac{n-1}2,\frac n2]$, and $$ \overline{\lim_{r\to+0}}\sup_{x\in\mathbb R^n}r^2\biggl(\frac1{v(B_r)}\int_{B_r(x)}|V(y)|^p\,dy\biggr)^{1/p}\leqslant\varepsilon_0, $$ where the number $\varepsilon_0=\varepsilon_0(n,p;A)>0$ depends on the vector potential $A$, $B_r(x)$ is a closed ball of radius $r>0$ centered at the point $x\in\mathbb R^n$, $v(B_r)$ is the $n$-dimensional volume of the ball $B_r=B_r(0)$. Let $K$ be the fundamental domain of the period lattice (which is common for the potentials $A$ and $V$), $K^*$ the fundamental domain of the reciprocal lattice. The operator $\widehat H_A+V$ is unitarily equivalent to the direct integral of operators $\widehat H_A(k)+V$, $k\in2\pi K^*$, acting on the space $L^2(K)$. The last operators are also considered for complex vectors $k+ik'\in\mathbb C^n$. To prove absolute continuity of the spectrum of the operator $\widehat H_A+V$, we use the Thomas method. The main ingredient in the proof is the following inequality: \begin{gather*} \|\,|\widehat H_0(k+ik')|^{-1/2}\bigl(\widehat H_A(k+ik')+V-\lambda\bigr)\varphi\|_{L^2(K)}\geqslant\widetilde C_1\|\,|\widehat H_0(k+ik')|^{1/2}\varphi\|_{L^2(K)},\\ \varphi\in D(\widehat H_A(k+ik')+V), \end{gather*} which holds for some appropriate chosen complex vectors $k+ik'\in\mathbb C^n$ (depending on $A,V$, and the number $\lambda\in\mathbb R$) with sufficiently large imaginary part $k'$, where $\widetilde C_1=\widetilde C_1 (n;A)>0$ and $\widehat H_0(k+ik')$ is the operator $\widehat H_A(k+ik')$ for $A\equiv0$.
Keywords: Schrödinger operator, absolute continuity of the spectrum, periodic potential, Morrey space.
@article{VUU_2012_3_a3,
     author = {L. I. Danilov},
     title = {On the spectrum of a~periodic {Schr\"odinger} operator with potential in the {Morrey} space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {25--47},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of a periodic Schrödinger operator with potential in the Morrey space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 25
EP  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/
LA  - ru
ID  - VUU_2012_3_a3
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of a periodic Schrödinger operator with potential in the Morrey space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 25-47
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/
%G ru
%F VUU_2012_3_a3
L. I. Danilov. On the spectrum of a periodic Schrödinger operator with potential in the Morrey space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 25-47. http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/

[1] Danilov L. I., “On the spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871 | DOI | MR | Zbl

[2] Danilov L. I., On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators, I, Deposited at VINITI 15.06.2000, No 1683-B00, Physical–Technical Institute of the Ural Branch of the Russian Academy of Sciences, Izhevsk, 2000, 76 pp.

[3] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | MR | Zbl

[4] Danilov L. I., “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A: Math. Theor., 42 (2009), 275204 | DOI | MR | Zbl

[5] Chanillo S., Sawyer E., “Unique continuation for $\Delta+v$ and the C. Fefferman–Phong class”, Trans. Amer. Math. Soc., 318:1 (1990), 275–300 | MR | Zbl

[6] Chiarenza F., Ruiz A., “Uniform $L^2$-weighted Sobolev inequalities”, Proc. Amer. Math. Soc., 112:1 (1991), 53–64 | MR | Zbl

[7] Shen Z., “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 193 (2002), 314–345 | DOI | MR | Zbl

[8] Fefferman C., “The uncertainty principle”, Bull. Amer. Math. Soc. (N.S.), 9:2 (1983), 129–206 | DOI | MR | Zbl

[9] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR

[10] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR

[11] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[12] Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[13] Birman M. Sh., Suslina T. A., “Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector valued potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR | Zbl

[14] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A: Math. Gen., 31 (1998), 7593–7601 | DOI | MR | Zbl

[15] Shen Z., “Absolute continuity of periodic Schrödinger operators with potentials in the Kato class”, Illinois J. Math., 45:3 (2001), 873–893 | MR | Zbl

[16] Shterenberg R. G., “Absolute continuity of the spectrum of a two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Trudy S.-Peterburg. Mat. Obshch., 9, 2001, 199–233 | Zbl

[17] Danilov L. I., “On the spectrum of a two-dimensional periodic Schrödinger operator”, Theoret. and Math. Phys., 134:3 (2003), 392–403 | DOI | MR | Zbl

[18] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional periodic Schrödinger operator with strongly subordinate magnetic potential”, J. Math. Sci., 129 (2005), 4087–4109 | MR | Zbl

[19] Danilov L. I., “On the absence of eigenvalues in the spectrum of two-dimensional periodic Dirac and Schrödinger operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., Izhevsk, 2004, no. 1 (29), 49–84

[20] Shen Z., “On absolute continuity of the periodic Schrödinger operators”, Int. Math. Res. Notices, 2001:1 (2001), 1–31 | DOI | MR | Zbl

[21] Shen Z., Zhao P., “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Trans. Amer. Math. Soc., 360:4 (2008), 1741–1758 | DOI | MR | Zbl

[22] Kenig C. E., Ruiz A., Sogge C. D., “Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators”, Duke Math. J., 55 (1987), 329–347 | DOI | MR | Zbl

[23] Koch H., Tataru D., “Sharp counterexamples in unique continuation for second order elliptic equations”, J. Reine Angew. Math., 542 (2002), 133–146 | MR | Zbl

[24] Sobolev A. V., “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR | Zbl

[25] Danilov L. I., “On absolute continuity of the spectrum of a periodic Schrödinger operator”, Math. Notes, 73:1 (2003), 46–57 | DOI | MR | Zbl

[26] Tikhomirov M., Filonov N., “Absolute continuity of the «even» periodic Schrödinger operator with nonsmooth coefficients”, St. Petersburg Math. J., 16:3 (2005), 583–589 | MR | Zbl

[27] Suslina T. A., Shterenberg R. G., “Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces”, St. Petersburg Math. J., 13:5 (2002), 859–891 | MR | Zbl

[28] Shen Z., “Absolute continuity of generalized periodic Schrödinger operators”, Contemp. Math., 277 (2001), 113–126 | DOI | MR | Zbl

[29] Friedlander L., “On the spectrum of a class of second order periodic elliptic differential operators”, Commun. Math. Phys., 229 (2002), 49–55 | DOI | MR | Zbl

[30] Danilov L. I., “Absolute continuity of the spectrum of a multidimensional periodic magnetic Dirac operator”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1, 61–96

[31] Danilov L. I., On absolute continuity of the spectrum of a $d$-dimensional periodic magnetic Dirac operator, Preprint, 2008, arXiv: 0805.0399[math-ph]

[32] Danilov L. I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, J. Phys. A: Math. Theor., 43 (2010), 215201 | DOI | MR | Zbl

[33] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1976 | MR | Zbl

[34] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis. Self-adjointness, Academic, New York, 1975 | MR

[35] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhauser Verlag, Basel, 1993 | MR | Zbl

[36] Danilov L. I., The spectrum of the Dirac operator with periodic potential, VI, Deposited at VINITI 31.12.1996, No 3855-B96, Physical–Technical Institute of the Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp.

[37] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, J. Math. Sci., 136 (2006), 3826–3831 | MR | Zbl

[38] Tomas P., “A restriction theorem for the Fourier transform”, Bull. Amer. Math. Soc., 81 (1975), 477–478 | DOI | MR | Zbl

[39] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[40] Zygmund A., “On Fourier coefficients and transforms of functions of two variables”, Studia Math., 50 (1974), 189–201 | MR | Zbl

[41] Tao T., Recent progress on the restriction conjecture, Preprint, 2003, arXiv: math/0311181[math.CA]