@article{VUU_2012_3_a3,
author = {L. I. Danilov},
title = {On the spectrum of a~periodic {Schr\"odinger} operator with potential in the {Morrey} space},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {25--47},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/}
}
TY - JOUR AU - L. I. Danilov TI - On the spectrum of a periodic Schrödinger operator with potential in the Morrey space JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 25 EP - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/ LA - ru ID - VUU_2012_3_a3 ER -
L. I. Danilov. On the spectrum of a periodic Schrödinger operator with potential in the Morrey space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 25-47. http://geodesic.mathdoc.fr/item/VUU_2012_3_a3/
[1] Danilov L. I., “On the spectrum of the periodic Dirac operator”, Theoret. and Math. Phys., 124:1 (2000), 859–871 | DOI | MR | Zbl
[2] Danilov L. I., On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators, I, Deposited at VINITI 15.06.2000, No 1683-B00, Physical–Technical Institute of the Ural Branch of the Russian Academy of Sciences, Izhevsk, 2000, 76 pp.
[3] Danilov L. I., “Absolute continuity of the spectrum of a periodic Dirac operator”, Differential Equations, 36:2 (2000), 262–271 | MR | Zbl
[4] Danilov L. I., “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A: Math. Theor., 42 (2009), 275204 | DOI | MR | Zbl
[5] Chanillo S., Sawyer E., “Unique continuation for $\Delta+v$ and the C. Fefferman–Phong class”, Trans. Amer. Math. Soc., 318:1 (1990), 275–300 | MR | Zbl
[6] Chiarenza F., Ruiz A., “Uniform $L^2$-weighted Sobolev inequalities”, Proc. Amer. Math. Soc., 112:1 (1991), 53–64 | MR | Zbl
[7] Shen Z., “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 193 (2002), 314–345 | DOI | MR | Zbl
[8] Fefferman C., “The uncertainty principle”, Bull. Amer. Math. Soc. (N.S.), 9:2 (1983), 129–206 | DOI | MR | Zbl
[9] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR
[10] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR
[11] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl
[12] Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl
[13] Birman M. Sh., Suslina T. A., “Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector valued potential”, St. Petersburg Math. J., 10:4 (1999), 579–601 | MR | Zbl
[14] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A: Math. Gen., 31 (1998), 7593–7601 | DOI | MR | Zbl
[15] Shen Z., “Absolute continuity of periodic Schrödinger operators with potentials in the Kato class”, Illinois J. Math., 45:3 (2001), 873–893 | MR | Zbl
[16] Shterenberg R. G., “Absolute continuity of the spectrum of a two-dimensional magnetic periodic Schrödinger operator with positive electric potential”, Trudy S.-Peterburg. Mat. Obshch., 9, 2001, 199–233 | Zbl
[17] Danilov L. I., “On the spectrum of a two-dimensional periodic Schrödinger operator”, Theoret. and Math. Phys., 134:3 (2003), 392–403 | DOI | MR | Zbl
[18] Shterenberg R. G., “Absolute continuity of the spectrum of the two-dimensional periodic Schrödinger operator with strongly subordinate magnetic potential”, J. Math. Sci., 129 (2005), 4087–4109 | MR | Zbl
[19] Danilov L. I., “On the absence of eigenvalues in the spectrum of two-dimensional periodic Dirac and Schrödinger operators”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., Izhevsk, 2004, no. 1 (29), 49–84
[20] Shen Z., “On absolute continuity of the periodic Schrödinger operators”, Int. Math. Res. Notices, 2001:1 (2001), 1–31 | DOI | MR | Zbl
[21] Shen Z., Zhao P., “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Trans. Amer. Math. Soc., 360:4 (2008), 1741–1758 | DOI | MR | Zbl
[22] Kenig C. E., Ruiz A., Sogge C. D., “Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators”, Duke Math. J., 55 (1987), 329–347 | DOI | MR | Zbl
[23] Koch H., Tataru D., “Sharp counterexamples in unique continuation for second order elliptic equations”, J. Reine Angew. Math., 542 (2002), 133–146 | MR | Zbl
[24] Sobolev A. V., “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR | Zbl
[25] Danilov L. I., “On absolute continuity of the spectrum of a periodic Schrödinger operator”, Math. Notes, 73:1 (2003), 46–57 | DOI | MR | Zbl
[26] Tikhomirov M., Filonov N., “Absolute continuity of the «even» periodic Schrödinger operator with nonsmooth coefficients”, St. Petersburg Math. J., 16:3 (2005), 583–589 | MR | Zbl
[27] Suslina T. A., Shterenberg R. G., “Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces”, St. Petersburg Math. J., 13:5 (2002), 859–891 | MR | Zbl
[28] Shen Z., “Absolute continuity of generalized periodic Schrödinger operators”, Contemp. Math., 277 (2001), 113–126 | DOI | MR | Zbl
[29] Friedlander L., “On the spectrum of a class of second order periodic elliptic differential operators”, Commun. Math. Phys., 229 (2002), 49–55 | DOI | MR | Zbl
[30] Danilov L. I., “Absolute continuity of the spectrum of a multidimensional periodic magnetic Dirac operator”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1, 61–96
[31] Danilov L. I., On absolute continuity of the spectrum of a $d$-dimensional periodic magnetic Dirac operator, Preprint, 2008, arXiv: 0805.0399[math-ph]
[32] Danilov L. I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, J. Phys. A: Math. Theor., 43 (2010), 215201 | DOI | MR | Zbl
[33] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1976 | MR | Zbl
[34] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis. Self-adjointness, Academic, New York, 1975 | MR
[35] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhauser Verlag, Basel, 1993 | MR | Zbl
[36] Danilov L. I., The spectrum of the Dirac operator with periodic potential, VI, Deposited at VINITI 31.12.1996, No 3855-B96, Physical–Technical Institute of the Ural Branch of the Russian Academy of Sciences, Izhevsk, 1996, 45 pp.
[37] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, J. Math. Sci., 136 (2006), 3826–3831 | MR | Zbl
[38] Tomas P., “A restriction theorem for the Fourier transform”, Bull. Amer. Math. Soc., 81 (1975), 477–478 | DOI | MR | Zbl
[39] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[40] Zygmund A., “On Fourier coefficients and transforms of functions of two variables”, Studia Math., 50 (1974), 189–201 | MR | Zbl
[41] Tao T., Recent progress on the restriction conjecture, Preprint, 2003, arXiv: math/0311181[math.CA]