On Volterra type generalization of monotonization method for nonlinear functional operator equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 84-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $n,m,\ell,s\in\mathbb N$ be given numbers, $\Pi\subset\mathbb R^n$ be a set measurable by Lebesgue and $\mathcal{X,Z}$ be some Banach ideal spaces of functions measurable on $\Pi$. We consider a nonlinear operator equation of the form as follows: \begin{equation} x=\theta+AF[x],\quad x\in\mathcal X^\ell, \tag{1} \end{equation} where $A\colon\mathcal Z^m\to\mathcal X^\ell$ is bounded linear operator, $F\colon\mathcal X^\ell\to\mathcal Z^m$ is some operator. Equation (1) is a natural form of lumped and distributed parameter systems from a wide enough class. Formerly, by V. P. Polityukov it was suggested monotonization method for justification of solvability of equation (1) and obtaining pointwise estimations for solutions. The matter of this method consisted in that solvability of equation (1) was proved (besides other conditions) under following: I) operator $F$ allows some correction of the form $G=\lambda I$ to monotone operator $\mathcal F[x]=F[\theta+x]+G[x]$ such that II) $(I+A G)^{-1}A\geq0$ ($\lambda>0$, $I$ is identity operator). As our examples show, conditions I) and II) may be contradictory to each other, that narrows a sphere of application of the method. The main result of the paper is that for the case of operator $A$, possessing the Volterra property, which is natural for evolutionary equations, the requirement I) of ability to be monotonized can be replaced by the requirement of some upper and lower estimates for operator $F$ on some cone segment through linear operator $G$ and additional fixed element. We prove that for global solvability of a boundary value problem associated with a semilinear evolutionary equation it is sufficient that analogous boundary value problem associated with linear equation, derived from the original equation by estimating of a right-hand side on some cone segment, have a positive solution. The application of results obtained is illustrated by Goursat–Darboux system, Cauchy problem associated with wave equation and first boundary value problem associated with diffusion equation.
Keywords: nonlinear operator equation, solvability, monotonization method, Volterra property.
@article{VUU_2012_2_a7,
     author = {A. V. Chernov},
     title = {On {Volterra} type generalization of monotonization method for nonlinear functional operator equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {84--99},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a7/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On Volterra type generalization of monotonization method for nonlinear functional operator equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 84
EP  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a7/
LA  - ru
ID  - VUU_2012_2_a7
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On Volterra type generalization of monotonization method for nonlinear functional operator equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 84-99
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a7/
%G ru
%F VUU_2012_2_a7
A. V. Chernov. On Volterra type generalization of monotonization method for nonlinear functional operator equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 84-99. http://geodesic.mathdoc.fr/item/VUU_2012_2_a7/

[1] Polityukov V. P., “Reshenie nekotorykh nelineinykh uravnenii v banakhovykh prostranstvakh s konusom i prilozheniya”, Doklady AN SSSR, 250:4 (1980), 818–822 | MR | Zbl

[2] Polityukov V. P., “O metode monotonizatsii nelineinykh uravnenii v banakhovom prostranstve”, Matematicheskie zametki, 44:6 (1988), 814–822 | MR | Zbl

[3] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1(26), 39–49

[4] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | MR | Zbl

[5] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[6] Chernov A. V., “O skhodimosti metoda prostoi iteratsii dlya resheniya nelineinykh funktsionalno-operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2011, no. 4(1), 149–155

[7] Birkgof G., Teoriya reshetok, Nauka, M., 1984, 568 pp. | MR

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[9] Sumin V. I., Chernov A. V., Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, Dep. v VINITI 25.04.2000, No 1198-V00, NNGU, Nizhnii Novgorod, 2000, 75 pp.

[10] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21 | MR | Zbl

[11] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[12] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR | Zbl

[13] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differentsialnye uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[14] Pugachev V. S., Lektsii po funktsionalnomu analizu, MAI, M., 1996, 744 pp.

[15] Lisachenko I. V., Sumin V. I., “Printsip maksimuma dlya terminalnoi zadachi optimizatsii sistemy Gursa–Darbu v klasse funktsii s summiruemoi smeshannoi proizvodnoi”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 52–67

[16] Sabitov K. B., Uravneniya matematicheskoi fiziki, Vysshaya shkola, M., 2003, 255 pp.

[17] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Opredeleniya, teoremy, formuly, Nauka, M., 1970, 720 pp. | MR

[18] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami. Chast I. Volterrovy uravneniya i upravlyaemye nachalno-kraevye zadachi, NNGU, Nizhnii Novgorod, 1992, 110 pp.

[19] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 334 pp. | MR

[20] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR | Zbl

[21] Budak B. M., Tikhonov A. N., Samarskii A. A., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1972, 686 pp. | MR | Zbl

[22] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp. | Zbl

[23] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[24] Fedorov V. M., Kurs funktsionalnogo analiz, Lan, SPb., 2005, 352 pp.

[25] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2000, 400 pp.