Sixteen points' model of hemispherical wave gyroscope
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 135-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One considers the model of hemispherical wave gyro in the form of mechanical's system. Model consists of sixteenth masses. One derives the equation of the movement this system.
Keywords: mathematical modeling, differential equations, dynamic system.
@article{VUU_2011_2_a9,
     author = {G. A. Trutnev},
     title = {Sixteen points' model of hemispherical wave gyroscope},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {135--146},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a9/}
}
TY  - JOUR
AU  - G. A. Trutnev
TI  - Sixteen points' model of hemispherical wave gyroscope
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 135
EP  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a9/
LA  - ru
ID  - VUU_2011_2_a9
ER  - 
%0 Journal Article
%A G. A. Trutnev
%T Sixteen points' model of hemispherical wave gyroscope
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 135-146
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a9/
%G ru
%F VUU_2011_2_a9
G. A. Trutnev. Sixteen points' model of hemispherical wave gyroscope. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 135-146. http://geodesic.mathdoc.fr/item/VUU_2011_2_a9/

[1] Basarab M. A., Kravchenko V. F., Matveev V. A., Matematicheskoe modelirovanie fizicheskikh protsessov v giroskopii, Monografiya, Radiotekhnika, M., 2005, 176 pp.

[2] Bonshtedt A. V., Kuzmin S. V., Machekhin P. K., “Vosmitochechnaya model tverdotelnogo volnovogo giroskopa”, Vestnik Udmurtskogo universiteta. Matematika, 2007, no. 1, 135–214

[3] Bonshtedt A. V., Zaitsev V. A., Machekhin P. K., Tonkov E. L., “Optimizatsiya upravleniya tverdotelnym volnovym giroskopom”, Vestnik Udmurtskogo universiteta. Matematika, 2005, no. 1, 189–214

[4] Dzhandzhgava G. I., “Besplatformennaya inertsialnaya navigatsionnaya sistema na baze TVG”, Giroskop i navigatsiya, 2008, no. 1, 22–31

[5] Zhbanov Yu. K., Zhuravlev V. F., “O balansirovke TVG”, Izv. RAN. Mekhanika tverdogo tela, 1998, no. 4, 4–16

[6] Zhuravlev V. F., Klimov D. M., Volnovoi tverdotelnyi giroskop, Nauka, M., 1985, 125 pp. | Zbl

[7] Egarmin N. E., Pogreshnosti VTG, Preprint No 391, Institut problem mekhaniki AN SSSR, 1989

[8] V. I. Drong i dr., Kurs teoreticheskoi mekhaniki, Uchebnik dlya vuzov, ed. K. S. Kolesnikov, Izd-vo MGTU im. N. E. Baumana, M., 2002, 736 pp.

[9] Matveev V. A., Lipatnikov V. I., Alekhin A. V., Proektirovanie volnovogo tverdotelnogo giroskopa, Izd-vo MGTU im. N. E. Baumana, M., 1997, 168 pp.

[10] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, FIZMATLIT, M., 2005, 320 pp. | MR

[11] Skarboro D. B., Giroskop: teoriya i primeneniya, Izd-vo inostrannoi literatury, M., 1961, 248 pp.